• search hit 4 of 12
Back to Result List

Stimuli-promoted in situ formation of hydrogels with thiol/thioester containing peptide precursors

Stimuli-induzierte In-Situ-Bildung von Hydrogelen durch Peptid-Prekursor mit Thiol/Thioestergruppen

  • Hydrogels are potential synthetic ECM-like substitutes since they provide functional and structural similarities compared to soft tissues. They can be prepared by crosslinking of macromolecules or by polymerizing suitable precursors. The crosslinks are not necessarily covalent bonds, but could also be formed by physical interactions such as π-π interactions, hydrophobic interactions, or H-bonding. On demand in situ forming hydrogels have garnered increased interest especially for biomedical applications over preformed gels due to the relative ease of in vivo delivery and filling of cavities. The thiol-Michael addition reaction provides a straightforward and robust strategy for in situ gel formation with its fast reaction kinetics and ability to proceed under physiological conditions. The incorporation of a trigger function into a crosslinking system becomes even more interesting since gelling can be controlled with stimulus of choice. The use of small molar mass crosslinker precursors with active groups orthogonal to thiol-MichaelHydrogels are potential synthetic ECM-like substitutes since they provide functional and structural similarities compared to soft tissues. They can be prepared by crosslinking of macromolecules or by polymerizing suitable precursors. The crosslinks are not necessarily covalent bonds, but could also be formed by physical interactions such as π-π interactions, hydrophobic interactions, or H-bonding. On demand in situ forming hydrogels have garnered increased interest especially for biomedical applications over preformed gels due to the relative ease of in vivo delivery and filling of cavities. The thiol-Michael addition reaction provides a straightforward and robust strategy for in situ gel formation with its fast reaction kinetics and ability to proceed under physiological conditions. The incorporation of a trigger function into a crosslinking system becomes even more interesting since gelling can be controlled with stimulus of choice. The use of small molar mass crosslinker precursors with active groups orthogonal to thiol-Michael reaction type electrophile provides the opportunity to implement an on-demand in situ crosslinking without compromising the fast reaction kinetics. It was postulated that short peptide sequences due to the broad range structural-function relations available with the different constituent amino acids, can be exploited for the realisation of stimuli-promoted in situ covalent crosslinking and gelation applications. The advantages of this system over conventional polymer-polymer hydrogel systems are the ability tune and predict material property at the molecular level. The main aim of this work was to develop a simplified and biologically-friendly stimuli-promoted in situ crosslinking and hydrogelation system using peptide mimetics as latent crosslinkers. The approach aims at using a single thiodepsipeptide sequence to achieve separate pH- and enzyme-promoted gelation systems with little modification to the thiodepsipeptide sequence. The realization of this aim required the completion of three milestones. In the first place, after deciding on the thiol-Michael reaction as an effective in situ crosslinking strategy, a thiodepsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) with expected propensity towards pH-dependent thiol-thioester exchange (TTE) activation, was proposed as a suitable crosslinker precursor for pH-promoted gelation system. Prior to the synthesis of the proposed peptide-mimetic, knowledge of the thiol-Michael reactivity of the would-be activated thiol moiety SH-Leu, which is internally embedded in the thiodepsipeptide was required. In line with pKa requirements for a successful TTE, the reactivity of a more acidic thiol, SH-Phe was also investigated to aid the selection of the best thiol to be incorporated in the thioester bearing peptide based crosslinker precursor. Using ‘pseudo’ 2D-NMR investigations, it was found that only reactions involving SH-Leu yielded the expected thiol-Michael product, an observation that was attributed to the steric hindrance of the bulkier nature of SH-Phe. The fast reaction rates and complete acrylate/maleimide conversion obtained with SH-Leu at pH 7.2 and higher aided the direct elimination of SH-Phe as a potential thiol for the synthesis of the peptide mimetic. Based on the initial studies, for the pH-promoted gelation system, the proposed Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH was kept unmodified. The subtle difference in pKa values between SH-Leu (thioester thiol) and the terminal cysteamine thiol from theoretical conditions should be enough to effect a ‘pseudo’ intramolecular TTE. In polar protic solvents and under basic aqueous conditions, TDP successfully undergoes a ‘pseudo’ intramolecular TTE reaction to yield an α,ω-dithiol tripeptide, HSLeu-Leu-Gly-NEtSH. The pH dependence of thiolate ion generation by the cysteamine thiol aided the incorporation of the needed stimulus (pH) for the overall success of TTE (activation step) – thiol-Michael addition (crosslinking) strategy. Secondly, with potential biomedical applications in focus, the susceptibility of TDP, like other thioesters, to intermolecular TTE reaction was probed with a group of thiols of varying thiol pKa values, since biological milieu characteristically contain peptide/protein thiols. L-cysteine, which is a biologically relevant thiol, and a small molecular weight thiol, methylthioglycolate both with relatively similar thiol pKa, values, led to an increase concentration of the dithiol crosslinker when reacted with TDP. In the presence of acidic thiols (p-NTP and 4MBA), a decrease in the dithiol concentration was observed, an observation that can be attributed to the inability of the TTE tetrahedral intermediate to dissociate into exchange products and is in line with pKa requirements for successful TTE reaction. These results additionally makes TDP more attractive and the potentially the first crosslinker precursor for applications in biologically relevant media. Finally, the ability of TDP to promote pH-sensitive in situ gel formation was probed with maleimide functionalized 4-arm polyethylene glycol polymers in tris-buffered media of varying pHs. When a 1:1 thiol: maleimide molar ratio was used, TDP-PEG4MAL hydrogels formed within 3, 12 and 24 hours at pH values of 8.5, 8.0 and 7.5 respectively. However, gelation times of 3, 5 and 30 mins were observed for the same pH trend when the thiol: maleimide molar was increased to 2:1. A direct correlation of thiol content with G’ of the gels at each pH could also be drawn by comparing gels with thiol: maleimide ratios of 1:1 to those with 2:1 thiol: maleimide mole ratios. This is supported by the fact that the storage modulus (G') is linearly dependent on the crosslinking density of the polymer. The values of initial G′ for all gels ranged between (200 – 5000 Pa), which falls in the range of elasticities of certain tissue microenvironments for example brain tissue 200 – 1000 Pa and adipose tissue (2500 – 3500 Pa). Knowledge so far gained from the study on the ability to design and tune the exchange reaction of thioester containing peptide mimetic will give those working in the field further insight into the development of new sequences tailored towards specific applications. TTE substrate design using peptide mimetic as presented in this work has revealed interesting new insights considering the state-of-the-art. Using the results obtained as reference, the strategy provides a possibility to extend the concept to the controlled delivery of active molecules needed for other robust and high yielding crosslinking reactions for biomedical applications. Application for this sequentially coupled functional system could be seen e.g. in the treatment of inflamed tissues associated with urinary tract like bladder infections for which pH levels above 7 were reported. By the inclusion of cell adhesion peptide motifs, the hydrogel network formed at this pH could act as a new support layer for the healing of damage epithelium as shown in interfacial gel formation experiments using TDP and PEG4MAL droplets. The versatility of the thiodepsipeptide sequence, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-(TDPo) was extended for the design and synthesis of a MMP-sensitive 4-arm PEG-TDPo conjugate. The purported cleavage of TDPo at the Gly-SLeu bond yields active thiol units for subsequent reaction of orthogonal Michael acceptor moieties. One of the advantages of stimuli-promoted in situ crosslinking systems using short peptides should be the ease of design of required peptide molecules due to the predictability of peptide functions their sequence structure. Consequently the functionalisation of a 4-arm PEG core with the collagenase active TDPo sequence yielded an MMP-sensitive 4-arm thiodepsipeptide-PEG conjugate (PEG4TDPo) substrate. Cleavage studies using thiol flourometric assay in the presence of MMPs -2 and -9 confirmed the susceptibility of PEG4TDPo towards these enzymes. The resulting time-dependent increase in fluorescence intensity in the presence of thiol assay signifies the successful cleavage of TDPo at the Gly-SLeu bond as expected. It was observed that the cleavage studies with thiol flourometric assay introduces a sigmoid non-Michaelis-Menten type kinetic profile, hence making it difficult to accurately determine the enzyme cycling parameters, kcat and KM . Gelation studies with PEG4MAL at 10 % wt. concentrations revealed faster gelation with MMP-2 than MMP-9 with 28 and 40 min gelation times respectively. Possible contributions by hydrolytic cleavage of PEG4TDPo has resulted in the gelation of PEG4MAL blank samples but only after 60 minutes of reaction. From theoretical considerations, the simultaneous gelation reaction would be expected to more negatively impact the enzymatic than hydrolytic cleavage. The exact contributions from hydrolytic cleavage of PEG4TDPo would however require additional studies. In summary this new and simplified in situ crosslinking system using peptide-based crosslinker precursors with tuneable properties exhibited in situ crosslinking gelation kinetics on similar levels with already active dithiols reported. The advantageous on-demand functionality associated with its pH-sensitivity and physiological compatibility makes it a strong candidate worth further research as biomedical applications in general and on-demand material synthesis is concerned. Results from MMP-promoted gelation system unveils a simple but unexplored approach for in situ synthesis of covalently crosslinked soft materials, that could lead to the development of an alternative pathway in addressing cancer metastasis by making use of MMP overexpression as a trigger. This goal has so far not being reach with MMP inhibitors despite the extensive work this regard.show moreshow less
  • Hydrogele sind synthetische, potenziell ECM-ähnliche Substituenten, die funktionelle und strukturelle Ähnlichkeiten mit Weichteilgeweben aufweisen. Sie können durch Vernetzung von Makromolekülen oder durch Polymerisation geeigneter Precursoren hergestellt werden. Die Vernetzungen müssen nicht unbedingt aus kovalenten Bindungen bestehen, sondern können auch durch physikalische Wechselwirkungen wie π-π-Wechselwirkungen, hydrophoben Wechselwirkungen oder Wasserstoff-Brückenbindungen entstehen. In-situ-Hydrogele, die on-demand gebildet werden, haben vor allem für biomedizinische Anwendungen gegenüber vorgefertigten Gelen zunehmend an Interesse gewonnen, da sie relativ einfach in-vivo eingebracht und somit Fehlstellen gefüllt werden können. Die Thiol-Michael-Additionsreaktion bietet mit ihrer schnellen Reaktionskinetik und ihrer Fähigkeit, unter physiologischen Bedingungen abzulaufen, eine unkomplizierte und robuste Strategie für die in-situ-Gelbildung. Der Einbau einer Triggerfunktion in ein Vernetzungssystem ist besonders interessant, daHydrogele sind synthetische, potenziell ECM-ähnliche Substituenten, die funktionelle und strukturelle Ähnlichkeiten mit Weichteilgeweben aufweisen. Sie können durch Vernetzung von Makromolekülen oder durch Polymerisation geeigneter Precursoren hergestellt werden. Die Vernetzungen müssen nicht unbedingt aus kovalenten Bindungen bestehen, sondern können auch durch physikalische Wechselwirkungen wie π-π-Wechselwirkungen, hydrophoben Wechselwirkungen oder Wasserstoff-Brückenbindungen entstehen. In-situ-Hydrogele, die on-demand gebildet werden, haben vor allem für biomedizinische Anwendungen gegenüber vorgefertigten Gelen zunehmend an Interesse gewonnen, da sie relativ einfach in-vivo eingebracht und somit Fehlstellen gefüllt werden können. Die Thiol-Michael-Additionsreaktion bietet mit ihrer schnellen Reaktionskinetik und ihrer Fähigkeit, unter physiologischen Bedingungen abzulaufen, eine unkomplizierte und robuste Strategie für die in-situ-Gelbildung. Der Einbau einer Triggerfunktion in ein Vernetzungssystem ist besonders interessant, da die Gelierung durch einen gewählten Stimulus gesteuert werden kann. Die Verwendung eines Precursors mit geringer Molmasse und aktiven Gruppen, die orthogonal zu den Elektrophilen des Thiol-Michael-Reaktionstyps sind, bietet die Möglichkeit, eine bedarfsgesteuerte in-situ-Vernetzung zu realisieren, ohne die schnelle Reaktionskinetik zu beeinträchtigen. Es wurde postuliert, dass kurze Peptidsequenzen aufgrund der weitreichenden Struktur-Funktions-Beziehungen, die mit den verschiedenen konstituierenden Aminosäuren zur Verfügung stehen, für die Realisierung von Stimulus-ausgelösten, in-situ kovalenten Vernetzungs- und Gelierungsanwendungen genutzt werden können. Die Vorteile dieses Systems gegenüber herkömmlichen Polymer-Polymer-Hydrogelsystemen liegen in der Möglichkeit, die Materialeigenschaften auf molekularer Ebene zu justieren und vorherzusagen. Das Hauptziel dieser Arbeit war die Entwicklung eines vereinfachten und biologisch-geeigneten, stimulierungsgeförderten in-situ-Vernetzungs- und Hydrogelierungssystems unter Verwendung von Peptidmimetika als latente Vernetzer. Der Ansatz zielt darauf ab, eine einzige Thiodepsipeptidsequenz zu verwenden, um getrennte pH- und enzymausgelöste Gelierungssysteme mit geringen Modifikationen der Thiodepsipeptidsequenz zu erreichen. Zur Verwirklichung dieses Ziels, mussten drei Meilensteine erreicht werden. Nach der Wahl der Thiol-Michael-Reaktion als in-situ-Vernetzungsstrategie, musste ein Thiodepsipeptid, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) mit einer zu erwartenden Neigung zu einer pH-abhängigen Thiol-Thioester-Austausch-Aktivierung (TTE), als geeignetem Vernetzer-Precursor für das pH-unterstützte Gelierungssystem designt werden. Vor der Synthese dieses Peptid-Mimetikums war die Untersuchung der Thiol-Michael-Reaktivität der potenziell aktivierten Thiolkomponente SH-Leu erforderlich, die intern in das Thiodepsipeptid eingebettet ist. In Übereinstimmung mit den pKa-Anforderungen für eine erfolgreiche TTE wurde auch die Reaktivität eines saureren Thiols, SH-Phe, untersucht, um die Auswahl des besten Thiols zu ermöglichen, das in den Thioester-tragenden Peptid-basierten Vernetzer-Precursor eingebaut werden sollte. Pseudo-2D-NMR-Untersuchungen zeigten, dass nur Reaktionen mit SH-Leu das erwartete Thiol-Michael-Produkt ergaben, eine Beobachtung, die auf die sterische Hinderung durch die sperrige Natur von SH-Phe zurückzuführen ist. Wegen der schnellen Reaktionsgeschwindigkeiten und der vollständigen Acrylat/Maleimid-Umwandlung, die mit SH-Leu bei einem pH-Wert von 7,2 und höher erzielt wurde, kam SH-Phe als potenzielles Thiol für die Synthese des Peptidmimetikums nicht mehr infrage. Auf der Grundlage der ersten Studien wurde für das pH-basierte Gelierungssystem das vorgeschlagene Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH unverändert beibehalten. Der geringe Unterschied in den pKa-Werten zwischen SH-Leu (Thioesterthiol) und dem terminalen Cysteaminthiol sollte ausreichen, um eine "pseudo"-intramolekulare TTE zu bewirken. In polaren protischen Lösungsmitteln und unter basischen wässrigen Bedingungen verläuft die "pseudo"-intramolekulare TTE-Reaktion bei TDP erfolgreich, bei der ein α,ω-Dithiol-Tripeptid, HSLeu-Leu-Gly-NEtSH, entsteht. Die pH-Abhängigkeit der Thiolat-Ionen-Generierung durch das Cysteamin-Thiol trug dazu bei, den notwendigen Stimulus (pH) für den Gesamterfolg der TTE (Aktivierungsschritt) - Thiol-Michael-Addition (Vernetzung) Strategie einzubauen. Zweitens wurde mit Blick auf potenzielle biomedizinische Anwendungen die Empfindlichkeit von TDP, wie auch anderer Thioester, für die intermolekulare TTE-Reaktion mit einer Gruppe von Thiolen mit unterschiedlichen Thiol-pKa-Werten untersucht, da biologische Milieus typischerweise Peptid-/Proteinthiole enthalten. L-Cystein, ein biologisch relevantes Thiol, und ein Thiol mit geringem Molekulargewicht, Methylthioglykolat, die beide relativ ähnliche Thiol-pKa-Werte besitzen, führten bei der Reaktion mit TDP zu einer erhöhten Konzentration des Dithiol-Vernetzers. In Gegenwart von sauren Thiolen (p-NTP und 4MBA) wurde eine Abnahme der Dithiolkonzentration beobachtet, eine Beobachtung, die auf die Unfähigkeit des tetraedrischen TTE-Zwischenprodukts in Austauschprodukte zu dissoziieren zurückgeführt werden kann und mit den pKa-Anforderungen für eine erfolgreiche TTE-Reaktion in Einklang steht. Diese Ergebnisse machen TDP noch attraktiver und zum potenziell ersten Vernetzer-Precursor für Anwendungen in biologisch relevanten Medien. Schließlich wurde die Fähigkeit von TDP, die pH-empfindliche in-situ-Gelbildung zu fördern, mit Maleimid-funktionalisierten 4-armigen Polyethylenglykolpolymeren in tris-gepufferten Medien mit unterschiedlichen pH-Werten untersucht. Bei einem Molverhältnis von 1:1 Thiol zu Maleimid bildeten sich TDP-PEG4MAL-Hydrogele innerhalb von 3, 12 und 24 Stunden bei pH-Werten von 8,5, 8,0 bzw. 7,5. Bei einer Erhöhung des Molverhältnisses von Thiol zu Maleimid auf 2:1 wurden jedoch Gelierzeiten von 3, 5 und 30 Minuten für denselben pH-Trend beobachtet. Ein direkter Zusammenhang zwischen dem Thiolgehalt und G' der Gele bei jedem pH-Wert konnte auch durch den Vergleich von Gelen mit einem Thiol/Maleimid-Molverhältnis von 1:1 mit solchen mit einem Thiol/Maleimid-Molverhältnis von 2:1 hergestellt werden. Dies wird durch die Tatsache unterstützt, dass der Speichermodulus (G') linear von der Vernetzungsdichte des Polymers abhängig ist. Die Werte des anfänglichen G′ für alle Gele lagen bei 200 - 5000 Pa, was in den Bereich der Elastizitäten bestimmter Gewebe-Mikroumgebungen fällt, z. B. Gehirngewebe (200 - 1000 Pa) und Fettgewebe (2500 - 3500 Pa). Die bisher aus der Studie gewonnenen Erkenntnisse über die Möglichkeit, die Austauschreaktion von Thioester-haltigen Peptidmimetika zu entwerfen und abzustimmen, geben weitere Einblicke in die Entwicklung neuer, auf spezifische Anwendungen zugeschnittener Sequenzen. Das Design von TTE-Substraten unter Verwendung von Peptidmimetika, wie es in dieser Arbeit vorgestellt wurde, hat interessante neue Erkenntnisse im Hinblick auf den Stand der Technik gebracht. Mit den erzielten Ergebnissen als Basis bietet die Strategie die Möglichkeit, das Konzept auf die kontrollierte Freisetzung aktiver Moleküle zu erweitern, die für andere robuste Vernetzungsreaktionen mit hohem Umsatz für biomedizinische Anwendungen benötigt werden. Dieses sequentiell gekoppelte funktionelle System könnte z. B. bei der Behandlung von entzündetem Gewebe im Zusammenhang mit Harnwegsinfektionen wie Blasenentzündungen eingesetzt werden, für die pH-Werte über 7 berichtet wurden. Durch die Einbeziehung von Zelladhäsionspeptidmotiven könnte das bei diesem pH-Wert gebildete Hydrogelnetz als neue Stützschicht für die Heilung von geschädigtem Epithel fungieren, wie in Experimenten zur Bildung von Grenzflächengelen mit TDP- und PEG4MAL-Tropfen gezeigt wurde. Die Vielseitigkeit der Thiodepsipeptidsequenz Ac-Pro-Leu-Gly-SLeu-Leu-Gly-(TDPo) wurde um Design und die Synthese eines MMP-empfindlichen 4-armigen PEG-TDPo-Konjugats erweitert. Die beabsichtigte Spaltung von TDPo an der Gly-SLeu-Bindung liefert aktive Thiol-Einheiten für die anschließende Reaktion orthogonaler Michael-Akzeptor-Einheiten. Einer der Vorteile stimulierungsgestützter in-situ-Vernetzungssysteme unter Verwendung kurzer Peptide dürfte darin liegen, dass sich die erforderlichen Peptidmoleküle aufgrund der Vorhersagbarkeit der Peptidfunktionen und ihrer Sequenzstruktur leicht entwerfen lassen. Die Funktionalisierung eines vierarmigen PEG-Kerns mit der kollagenaseaktiven TDPo-Sequenz führte zu einem MMP-empfindlichen vierarmigen Thiodepsipeptid-PEG-Konjugat (PEG4TDPo). Spaltungs-Studien unter Verwendung eines thiolfluorimetrischen Assays in Gegenwart der MMPs -2 und -9 bestätigten die Spaltbarkeit von PEG4TDPo durch diese Enzyme. Der daraus resultierende zeitabhängige Anstieg der Fluoreszenzintensität in Anwesenheit des Thiol-Assays deutet auf die erfolgreiche Spaltung von TDPo an der Gly-SLeu-Bindung hin. Es wurde festgestellt, dass die Spaltungsstudien mit dem thiol-fluorimetrischen Assay ein sigmoides, nicht-Michaelis-Menten-artiges kinetisches Profil ergeben, was eine genaue Bestimmung der Enzymzyklusparameter, kcat und KM, erschwert. Gelierungsstudien mit PEG4MAL in einer Konzentration von 10 Gew.-% ergaben eine schnellere Gelierung mit MMP-2 als mit MMP-9 mit Gelierungszeiten von 28 bzw. 40 Minuten. Eventuelle Beiträge durch hydrolytische Spaltung von PEG4TDPo an der Gelierung wurden an PEG4MAL-Blindproben untersucht und führten erst nach 60 Minuten Reaktionszeit zu einer Gelierung. Aus theoretischen Überlegungen heraus wäre zu erwarten, dass sich die gleichzeitige Gelierungsreaktion negativer auf die enzymatische als auf die hydrolytische Spaltung auswirkt. Genaues zum Beitrag der hydrolytischen Spaltung von PEG4TDPo bedürfte jedoch weiterer Untersuchungen. Zusammenfassend lässt sich sagen, dass dieses neue in-situ-Vernetzungssystem, bei dem Peptid-basierte Vernetzungs-Precursor mit einstellbaren Eigenschaften verwendet werden, eine in-situ-Vernetzungs-Gelierungskinetik auf ähnlichem Niveau wie bei bereits berichteten aktiven Dithiole aufweist. Die vorteilhafte On-Demand-Funktionalität in Verbindung mit ihrer pH-Sensitivität und physiologischen Verträglichkeit macht sie zu einem interessanten Kandidaten für weitere Forschungen im Bereich biomedizinischer Anwendungen im Allgemeinen und der On-Demand-Materialsynthese. Die Ergebnisse des MMP-geförderten Gelierungssystems weisen einen einfachen, aber unerforschten Ansatz für die in-situ-Synthese kovalent vernetzter weicher Materialien, der zur Entwicklung eines alternativen Weges zur Bekämpfung der Krebsmetastasierung führen könnte, indem er die MMP-Überexpression als Auslöser nutzt. Mit MMP-Inhibitoren wurde dieses Ziel trotz umfangreicher Arbeiten in dieser Hinsicht bisher nicht erreicht.show moreshow less

Download full text files

  • SHA-512:4fb7f1fe37383edad20cae9a7a17d0ff3331a804149df78c31d6afd3b4a2894b6fd643afde047fe8243e69954fc4c2917f4d5e3aace90a4e1bc36d1f303801f8

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Makafui Yao FolikumahORCiD
URN:urn:nbn:de:kobv:517-opus4-569713
DOI:https://doi.org/10.25932/publishup-56971
Reviewer(s):Axel T. NeffeORCiDGND, Katja HanackORCiDGND
Supervisor(s):Axel T. Neffe, Katja Hanack
Publication type:Doctoral Thesis
Language:English
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/11/24
Release date:2022/12/22
Tag:Hydrogele; Peptid; Stimuli; Thioester; Vernetzer
crosslinker; hydrogels; peptide; stimuli; thioester
Number of pages:159
RVK - Regensburg classification:WD 5000 , VK 8007
Organizational units:Extern
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.