• Treffer 3 von 3
Zurück zur Trefferliste

Accelerating invasion rates result from the evolution of density-dependent dispersal

  • Evolutionary processes play an important role in shaping the dynamics of range expansions, and selection on dispersal propensity has been demonstrated to accelerate rates of advance. Previous theory has considered only the evolution of unconditional dispersal rates, but dispersal is often more complex. For example, many species emigrate in response to crowding. Here, we use an individual-based model to investigate the evolution of density dependent dispersal into empty habitat, such as during an invasion. The landscape is represented as a lattice and dispersal between Populations follows a stepping-stone pattern. Individuals carry three 'genes' that determine their dispersal strategy when experiencing different population densities. For a stationary range we obtain results consistent with previous theoretical studies: few individuals emigrate from patches that are below equilibrium density. However, during the range expansion of a previously stationary population, we observe evolution towards dispersal strategies where considerableEvolutionary processes play an important role in shaping the dynamics of range expansions, and selection on dispersal propensity has been demonstrated to accelerate rates of advance. Previous theory has considered only the evolution of unconditional dispersal rates, but dispersal is often more complex. For example, many species emigrate in response to crowding. Here, we use an individual-based model to investigate the evolution of density dependent dispersal into empty habitat, such as during an invasion. The landscape is represented as a lattice and dispersal between Populations follows a stepping-stone pattern. Individuals carry three 'genes' that determine their dispersal strategy when experiencing different population densities. For a stationary range we obtain results consistent with previous theoretical studies: few individuals emigrate from patches that are below equilibrium density. However, during the range expansion of a previously stationary population, we observe evolution towards dispersal strategies where considerable emigration occurs well below equilibrium density. This is true even for moderate costs to dispersal, and always results in accelerating rates of range expansion. Importantly, the evolution we observe at an expanding front depends upon fitness integrated over several generations and cannot be predicted by a consideration of lifetime reproductive success alone. We argue that a better understanding of the role of density dependent dispersal, and its evolution, in driving population dynamics is required especially within the context of range expansions.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Justin M. J. TravisORCiD, Karen Mustin, Tim G. Benton, Calvin Dytham
URL:http://www.sciencedirect.com/science/journal/00225193
DOI:https://doi.org/10.1016/j.jtbi.2009.03.008
ISSN:0022-5193
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2009
Erscheinungsjahr:2009
Datum der Freischaltung:25.03.2017
Quelle:Journal of theoretical biology. - ISSN 0022-5193. - 259 (2009), 1, S. 151 - 158
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.