• search hit 3 of 8
Back to Result List

Integrated data analysis at an archaeological site : a case study using 3D GPR, magnetic, and high-resolution topographic data

  • We have collected magnetic, 3D ground-penetrating-radar (GPR), and topographic data at an archaeological site within the Palace Garden of Paretz, Germany. The survey site covers an area of approximately 35 x 40 m across a hill structure (dips of up to 15 degrees) that is partly covered by trees. The primary goal of this study was to detect and locate the remains of ancient architectural elements, which, from historical records, were expected to be buried in the subsurface at this site. To acquire our geophysical data, we used a recently developed surveying approach that combines the magnetic and GPR instrument with a tracking total station (TTS). Besides efficient data acquisition, this approach provides positional information at an accuracy within the centimeter range. At the Paretz field site, this information was critical for processing and analyzing our geophysical data (in particular, GPR data) and enabled us to generate a high-resolution digital terrain model (DTM) of the surveyed area. Integrated analysis and interpretationWe have collected magnetic, 3D ground-penetrating-radar (GPR), and topographic data at an archaeological site within the Palace Garden of Paretz, Germany. The survey site covers an area of approximately 35 x 40 m across a hill structure (dips of up to 15 degrees) that is partly covered by trees. The primary goal of this study was to detect and locate the remains of ancient architectural elements, which, from historical records, were expected to be buried in the subsurface at this site. To acquire our geophysical data, we used a recently developed surveying approach that combines the magnetic and GPR instrument with a tracking total station (TTS). Besides efficient data acquisition, this approach provides positional information at an accuracy within the centimeter range. At the Paretz field site, this information was critical for processing and analyzing our geophysical data (in particular, GPR data) and enabled us to generate a high-resolution digital terrain model (DTM) of the surveyed area. Integrated analysis and interpretation based on composite images of the magnetic, 3D GPR, and high-resolution DTM data as well as selected attributes derived from these data sets allowed us to outline the remains of an artificial grotto and temple. Our work illustrates the benefit of using multiple surveying technologies, analyzing and interpreting the resulting data in an integrated fashion. It further demonstrates how modern surveying solutions allow for efficient, accurate data acquisition even in difficult terrain.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Urs Boeniger, Jens TronickeORCiDGND
URL:http://geophysics.geoscienceworld.org/
DOI:https://doi.org/10.1190/1.3460432
ISSN:0016-8033
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Geophysics. - ISSN 0016-8033. - 75 (2010), 4, S. B169 - B176
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.