• Treffer 1 von 1
Zurück zur Trefferliste

Hypotonicity differentially affects inflammatory marker production by nucleus pulposus tissue in simulated disc degeneration versus herniation

  • Inflammatory cytokines play an important role in intervertebral disc degeneration. Although largely produced by immune cells, nucleus pulposus (NP) cells can also secrete them under various conditions, for example, under free swelling. Thus, tissue hypotonicity may be an inflammatory trigger for NP cells. The aim of this study was to investigate whether decreased tonicity under restricted swelling conditions (as occurring in early disc degeneration) could initiate an inflammatory cascade that mediates further degeneration. Healthy bovine NP tissue was balanced against different PEG concentrations (0-30%) to obtain various tissue tonicities. Samples were then placed in an artificial annulus (fixed volume) and were cultured for 3, 7, or 21 days, with free swelling NP as control. Tissue content (water, glycosaminoglycan, collagen) was analyzed, and both the tissue and medium were screened for tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), interleukin-8 (IL-8), prostaglandin-E-2 (PGE(2)),Inflammatory cytokines play an important role in intervertebral disc degeneration. Although largely produced by immune cells, nucleus pulposus (NP) cells can also secrete them under various conditions, for example, under free swelling. Thus, tissue hypotonicity may be an inflammatory trigger for NP cells. The aim of this study was to investigate whether decreased tonicity under restricted swelling conditions (as occurring in early disc degeneration) could initiate an inflammatory cascade that mediates further degeneration. Healthy bovine NP tissue was balanced against different PEG concentrations (0-30%) to obtain various tissue tonicities. Samples were then placed in an artificial annulus (fixed volume) and were cultured for 3, 7, or 21 days, with free swelling NP as control. Tissue content (water, glycosaminoglycan, collagen) was analyzed, and both the tissue and medium were screened for tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), interleukin-8 (IL-8), prostaglandin-E-2 (PGE(2)), and nitric oxide (NO). A range of tonicities (isotonic to hypotonic) was present at day 3 in the PEG-treated samples. However, during culture, the tonicity range narrowed as GAGs leached from the tissue. TNF-alpha and IL-1 beta were below detection limits in all conditions, while mid- and downstream inflammatory cytokines were detected. This may suggest that the extracellular environment directly affects NP cells instead of inducing a classical inflammatory cascade. Furthermore, IL-8 increased in swelling restricted samples, while IL-6 and PGE(2) were elevated in free swelling controls. These findings may suggest the involvement of different mechanisms in disc degeneration with intact AF compared to herniation, and encourage further investigation. (c) 2019 The Authors. Journal of Orthopaedic Research (R) Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Reszeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Vivian H. M. Mouser, Irene T. M. Arkesteijn, Bart G. M. van Dijk, Karin Würtz-KozakORCiDGND, Keita Ito
DOI:https://doi.org/10.1002/jor.24268
ISSN:0736-0266
ISSN:1554-527X
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/30835843
Titel des übergeordneten Werks (Englisch):Journal of orthopaedic research
Verlag:Wiley
Verlagsort:Hoboken
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:05.03.2019
Erscheinungsjahr:2019
Datum der Freischaltung:25.02.2021
Freies Schlagwort / Tag:(hypo)tonicity; inflammation; intervertebral disc degeneration; nucleus pulposus
Band:37
Ausgabe:5
Seitenanzahl:7
Erste Seite:1110
Letzte Seite:1116
Fördernde Institution:Swiss National Science FoundationSwiss National Science Foundation (SNSF) [SNF PP00P2_163678/1]
Organisationseinheiten:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Sport- und Gesundheitswissenschaften
DDC-Klassifikation:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.