• search hit 3 of 7
Back to Result List

Slow strain release along the eastern Marmara region offshore Istanbul in conjunction with enhanced local seismic moment release

  • We analyze a large transient strainmeter signal recorded at 62.5 m depth along the southern shore of the eastern Sea of Marmara region in northwestern Turkey. This region represents a passage of stress transfer from the Izmit rupture to the Marmara seismic gap. The strain signal was recorded at the Esenkoy site by one of the ICDP-GONAF (International Continental Drilling Programme - Geophysical Observatory at the North Anatolian Fault) strainmeters on the Armutlu peninsula with a maximum amplitude of 5 microstrain and lasting about 50 days. The onset of the strain signal coincided with the origin time of a M-w 4.4 earthquake offshore Yalova, which occurred as part of a seismic sequence including eight M-w >= 3.5 earthquakes. The Mw 4.4 event occurred at a distance of about 30 km from Esenkoy on June 25th 2016 representing the largest earthquake in this region since 2008. Before the event, the maximum horizontal strain was subparallel to the regional maximum horizontal stress derived from stress inversion of local seismicity. DuringWe analyze a large transient strainmeter signal recorded at 62.5 m depth along the southern shore of the eastern Sea of Marmara region in northwestern Turkey. This region represents a passage of stress transfer from the Izmit rupture to the Marmara seismic gap. The strain signal was recorded at the Esenkoy site by one of the ICDP-GONAF (International Continental Drilling Programme - Geophysical Observatory at the North Anatolian Fault) strainmeters on the Armutlu peninsula with a maximum amplitude of 5 microstrain and lasting about 50 days. The onset of the strain signal coincided with the origin time of a M-w 4.4 earthquake offshore Yalova, which occurred as part of a seismic sequence including eight M-w >= 3.5 earthquakes. The Mw 4.4 event occurred at a distance of about 30 km from Esenkoy on June 25th 2016 representing the largest earthquake in this region since 2008. Before the event, the maximum horizontal strain was subparallel to the regional maximum horizontal stress derived from stress inversion of local seismicity. During the strain transient, we observe a clockwise rotation in the local horizontal strain field of about 20 degrees. The strain signal does not correlate with known environmental parameters such as annual changes of sea level, rainfall or temperature. The strain signal could indicate local slow slip on the Cinarcik fault and thus a transfer of stress to the eastern Marmara seismic gap.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Patricia Martinez-GarvonORCiDGND, Marco BohnhoffORCiDGND, David MencinORCiD, Grzegorz KwiatekORCiD, Georg DresenORCiDGND, Kathleen Hodgkinson, Murat Nurlu, Filiz Tuba Kadirioglu, Recai Feyiz Kartal
DOI:https://doi.org/10.1016/j.epsl.2019.01.001
ISSN:0012-821X
ISSN:1385-013X
Title of parent work (English):Earth & planetary science letters
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2019/01/28
Publication year:2019
Release date:2021/03/16
Tag:Sea of Marmara; seismic hazard; slow slip; strain transient; strainmeter data; transform faults
Volume:510
Number of pages:10
First page:209
Last Page:218
Funding institution:Helmholtz Young Investigators Group [SAIDAN: SO-053]; DFG (German Science Foundation)German Research Foundation (DFG) [KW84/4-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.