• Treffer 2 von 7
Zurück zur Trefferliste

Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides

  • Slow-moving landslides are a wide-spread type of active mass movement, can cause severe damages to infrastructure, and may be a precursor of sudden catastrophic slope failures. Pore-water pressure is commonly regarded as the most important among a number of possible factors controlling landslide velocity. We used high-resolution monitoring data to explore the relations of landslide mobility and hydrologic processes at the Heumoser landslide in Austria, which is characterized by continuous slow movement along a shear zone. Movement rates showed a seasonality that was associated with elevated pore-water pressures. Pore pressure monitoring revealed a system of confined and separated aquifers with differing dynamics. Analysis of a simple infinite slope mobility model showed that small variations in parameters, along with measured pore pressure dynamics, provided a perfect match to our observations. Modeling showed a stabilizing effect of snow cover due to the additional load. This finding was supported by a multiple regression model,Slow-moving landslides are a wide-spread type of active mass movement, can cause severe damages to infrastructure, and may be a precursor of sudden catastrophic slope failures. Pore-water pressure is commonly regarded as the most important among a number of possible factors controlling landslide velocity. We used high-resolution monitoring data to explore the relations of landslide mobility and hydrologic processes at the Heumoser landslide in Austria, which is characterized by continuous slow movement along a shear zone. Movement rates showed a seasonality that was associated with elevated pore-water pressures. Pore pressure monitoring revealed a system of confined and separated aquifers with differing dynamics. Analysis of a simple infinite slope mobility model showed that small variations in parameters, along with measured pore pressure dynamics, provided a perfect match to our observations. Modeling showed a stabilizing effect of snow cover due to the additional load. This finding was supported by a multiple regression model, which further suggested that effective pore pressures at the slip surface were partially differing from the borehole observations and were related to preferential infiltration and subsurface flow in adjacent areas. It appears that in a setting like the Heumoser landslide, hydrologic processes delicately influence slope mobility through their control on pore pressure dynamics and the weight of the landslide body, which challenges observation and modeling. Moreover, it appears that their simplicity, and especially their high sensitivity to parameter variations, limits the conclusions that can be drawn from infinite slope models.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Jan Wienhöfer, Falk Lindenmaier, Erwin Zehe
DOI:https://doi.org/10.2136/vzj2009.0182
ISSN:1539-1663
Titel des übergeordneten Werks (Englisch):Vadose zone journal
Verlag:Soil Science Society of America
Verlagsort:Madison
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2011
Erscheinungsjahr:2011
Datum der Freischaltung:26.03.2017
Band:10
Ausgabe:2
Seitenanzahl:16
Erste Seite:496
Letzte Seite:511
Fördernde Institution:Deutsche Forschungsgemeinschaft [DFG For581]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.