The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 1709
Back to Result List

On the time needed to reach an equilibrium structure of the radiation belts

  • In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1-D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3, and 6. We find that the equilibrium states at moderately low Kp, when plotted versus L shell (L) and energy (E), display the same interesting S shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L shell. Equilibrium electron flux profiles are governed by the Biot numberIn this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1-D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3, and 6. We find that the equilibrium states at moderately low Kp, when plotted versus L shell (L) and energy (E), display the same interesting S shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L shell. Equilibrium electron flux profiles are governed by the Biot number (tau(Diffusion)/tau(loss)), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E>300 keV and moderate Kp (<= 3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp = 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E similar to [200, 300] keV for L= [3.7, 4] at Kp= 1, E similar to[0.6, 1] MeV for L = [3, 4] at Kp = 3, and E similar to 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jean-François Ripoll, Vivien Loridan, G. S. Cunningham, Geoffrey D. ReevesORCiDGND, Yuri Y. ShpritsORCiD
DOI:https://doi.org/10.1002/2015JA022207
ISSN:2169-9380
ISSN:2169-9402
Title of parent work (English):Journal of geophysical research : Space physics
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:121
Number of pages:15
First page:7684
Last Page:7698
Funding institution:CEA/DAM; NNSA/DP; NASA [NNX10AK99G, NNX13AE34G]; NSF [443869-YS-21686]; UC Lab Fee grant [116720]; Horizon 2020 [637302]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.