• Treffer 1 von 2
Zurück zur Trefferliste

Host-location in flow by larvae of the symbiotic barnacle Savignium dentatum using odor-gated rheotaxis

  • The detection and location of specific organisms in the aquatic environment, whether they are mates, prey or settlement sites, are two of the most important challenges facing aquatic animals. Large marine invertebrates such as a lobster have been found to locate specific organisms by navigating in the plume of chemicals emitted by the target. However, active plume tracking in flow by small organisms such as a marine larvae has recieved little scientific attention. Here, we present results from a study examining host location in flow by nauplius larvae of the barnacle Trevathana dentata, which inhabits the stony reef coral Cyphastrea chalcidicium.The experiments included analysis of larval motion in an annular flume under four conditions: (i) still water, (ii) in flow, (iii) in still water with waterborne host metabolites and (iv) in flow with host metabolites. Our results show that T. dentata nauplii are unable to locate their target organism in still water using chemotaxis, but are capable of efficient host location in flow usingThe detection and location of specific organisms in the aquatic environment, whether they are mates, prey or settlement sites, are two of the most important challenges facing aquatic animals. Large marine invertebrates such as a lobster have been found to locate specific organisms by navigating in the plume of chemicals emitted by the target. However, active plume tracking in flow by small organisms such as a marine larvae has recieved little scientific attention. Here, we present results from a study examining host location in flow by nauplius larvae of the barnacle Trevathana dentata, which inhabits the stony reef coral Cyphastrea chalcidicium.The experiments included analysis of larval motion in an annular flume under four conditions: (i) still water, (ii) in flow, (iii) in still water with waterborne host metabolites and (iv) in flow with host metabolites. Our results show that T. dentata nauplii are unable to locate their target organism in still water using chemotaxis, but are capable of efficient host location in flow using odour-gated rheotaxis. This technique may enable host location by earlier, less-developed larval stages.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Zohar Pasternak, Bernd BlasiusORCiDGND, Avigdor Abelson, Yair Achituv
URL:http://www.agnld.uni-potsdam.de/~bernd/papers/ProcRoySoc4.pdf
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2004
Erscheinungsjahr:2004
Datum der Freischaltung:24.03.2017
Quelle:Proceedings of the Royal Society of London / Series B: Biological sciences. - 271 (2004), 1549, S. 1745 - 1750
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.