• Treffer 15 von 30
Zurück zur Trefferliste

Ultrafast dissociation features in RIXS spectra of the water molecule

  • In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering (RIXS) spectra of gas phase water via the lowest dissociative core-excited state |1s−1O4a11〉. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state |1b−114a11〉 of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out theIn this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering (RIXS) spectra of gas phase water via the lowest dissociative core-excited state |1s−1O4a11〉. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state |1b−114a11〉 of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out the molecular and atomic-like contributions in the decay to the lowest valence-excited state. Our study is complemented by a theoretical discussion of RIXS in the case of isotopically substituted water (HDO and D2O) where the nuclear dynamics is significantly affected by the heavier fragments' mass.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Emelie ErtanORCiD, Viktoriia Savchenko, Nina Ignatova, Vinicius Vaz da CruzORCiD, Rafael C. Couto, Sebastian EckertORCiDGND, Mattis FondellORCiD, Marcus Dantz, Brian Kennedy, Thorsten Schmitt, Annette PietzschORCiD, Alexander FöhlischORCiDGND, Michael OdeliusORCiD, Victor KimbergORCiD
DOI:https://doi.org/10.1039/c8cp01807c
ISSN:1463-9076
ISSN:1463-9084
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/29770402
Titel des übergeordneten Werks (Englisch):Physical chemistry, chemical physics : a journal of European Chemical Societies
Verlag:Royal Society of Chemistry
Verlagsort:Cambridge
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:04.05.2018
Erscheinungsjahr:2018
Datum der Freischaltung:19.11.2021
Band:20
Ausgabe:21
Seitenanzahl:14
Erste Seite:14384
Letzte Seite:14397
Fördernde Institution:Swedish Research CouncilSwedish Research Council [2015-03781, 2015-03956, 2015-04510]; Knut and Alice Wallenberg foundationKnut & Alice Wallenberg Foundation [KAW-2013.0020]; Carl Tryggers Stiftelse [CTS KF 17: 9]; Russian Scientific FoundationRussian Science Foundation (RSF) [16-12-10109]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq Brazil)National Council for Scientific and Technological Development (CNPq) [234625/2014-7]; ERC-ADG [669531/EDAX]; Horizon EU Framework Programme for Research and Innovation
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Englisch):License LogoCreative Commons - Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 3.0 Unported
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.