• search hit 6 of 16
Back to Result List

How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil-plant system

  • The significance of biogenic silicon (BSi) pools as a key factor for the control of Si fluxes from terrestrial to aquatic ecosystems has been recognized for decades. However, while most research has been focused on phytogenic Si pools, knowledge of other BSi pools is still limited. We hypothesized that different BSi pools influence short-term changes in the water-soluble Si fraction in soils to different extents. To test our hypothesis we took plant (Calamagrostis epigejos, Phragmites australis) and soil samples in an artificial catchment in a post-mining landscape in the state of Brandenburg, Germany. We quantified phytogenic (phytoliths), protistic (diatom frustules and testate amoeba shells) and zoogenic (sponge spicules) Si pools as well as Tironextractable and water-soluble Si fractions in soils at the beginning (t(0)) and after 10 years (t(10)) of ecosystem development. As expected the results of Tiron extraction showed that there are no consistent changes in the amorphous Si pool at Chicken Creek (Huhnerwasser) as early asThe significance of biogenic silicon (BSi) pools as a key factor for the control of Si fluxes from terrestrial to aquatic ecosystems has been recognized for decades. However, while most research has been focused on phytogenic Si pools, knowledge of other BSi pools is still limited. We hypothesized that different BSi pools influence short-term changes in the water-soluble Si fraction in soils to different extents. To test our hypothesis we took plant (Calamagrostis epigejos, Phragmites australis) and soil samples in an artificial catchment in a post-mining landscape in the state of Brandenburg, Germany. We quantified phytogenic (phytoliths), protistic (diatom frustules and testate amoeba shells) and zoogenic (sponge spicules) Si pools as well as Tironextractable and water-soluble Si fractions in soils at the beginning (t(0)) and after 10 years (t(10)) of ecosystem development. As expected the results of Tiron extraction showed that there are no consistent changes in the amorphous Si pool at Chicken Creek (Huhnerwasser) as early as after 10 years. In contrast to t(0) we found increased water-soluble Si and BSi pools at t(10); thus we concluded that BSi pools are the main driver of short-term changes in water-soluble Si. However, because total BSi represents only small proportions of water-soluble Si at t(0) (< 2 %) and t(10) (2.8-4.3 %) we further concluded that smaller (< 5 mu m) and/or fragile phytogenic Si structures have the biggest impact on short-term changes in water-soluble Si. In this context, extracted phytoliths (> 5 mu m) only amounted to about 16% of total Si con-tents of plant materials of C. epigejos and P. australis at t(10); thus about 84% of small-scale and/or fragile phytogenic Si is not quantified by the used phytolith extraction method. Analyses of small-scale and fragile phytogenic Si structures are urgently needed in future work as they seem to represent the biggest and most reactive Si pool in soils. Thus they are the most important drivers of Si cycling in terrestrial biogeosystems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Daniel Puppe, Axel Höhn, Danuta Kaczorek, Manfred Wanner, Marc Wehrhan, Michael SommerORCiDGND
DOI:https://doi.org/10.5194/bg-14-5239-2017
ISSN:1726-4170
ISSN:1726-4189
Title of parent work (English):Biogeosciences
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:14
Number of pages:14
Funding institution:DFG [SO 302/7-1]; German Research Council (DFG, Bonn) [SFB/TRR 38]; Brandenburg Ministry of Science, Research and Culture (MWFK, Potsdam) [SFB/TRR 38]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.