• search hit 4 of 4
Back to Result List

Geologic context of geodetic data across a Basin and Range normal fault, Crescent Valley, Nevada

  • [1] Geodetic strain and late Quaternary faulting in the Basin and Range province is distributed over a region much wider than historic seismicity, which is localized near the margins of the province. In the relatively aseismic interior, both the magnitude and direction of geodetic strain may be inconsistent with the Holocene faulting record. We document the best example of such a disagreement across the NE striking, similar to55degrees NW dipping Crescent normal fault, where a NW oriented, 70 km geodetic baseline records contemporary shortening of similar to2 mm/yr orthogonal to the fault trace. In contrast, our geomorphic, paleoseismic, and geochronologic analyses of the Crescent fault suggest that a large extensional rupture occurred during the late Holocene epoch. An excavation across the fault at Fourmile Canyon reveals that the most recent event occurred at 2.8 +/- 0.1 ka, with net vertical tectonic displacement of 4.6 +/- 0.4 m at this location, corresponding to the release of similar to3 m of accumulated NW-SE extension.[1] Geodetic strain and late Quaternary faulting in the Basin and Range province is distributed over a region much wider than historic seismicity, which is localized near the margins of the province. In the relatively aseismic interior, both the magnitude and direction of geodetic strain may be inconsistent with the Holocene faulting record. We document the best example of such a disagreement across the NE striking, similar to55degrees NW dipping Crescent normal fault, where a NW oriented, 70 km geodetic baseline records contemporary shortening of similar to2 mm/yr orthogonal to the fault trace. In contrast, our geomorphic, paleoseismic, and geochronologic analyses of the Crescent fault suggest that a large extensional rupture occurred during the late Holocene epoch. An excavation across the fault at Fourmile Canyon reveals that the most recent event occurred at 2.8 +/- 0.1 ka, with net vertical tectonic displacement of 4.6 +/- 0.4 m at this location, corresponding to the release of similar to3 m of accumulated NW-SE extension. Measured alluvial scarp profiles suggest a minimum rupture length of 30 km along the range front for the event, implying a moment magnitude M-w of at least 6.6. No prior event occurred between similar to2.8 ka and similar to6.4 +/- 0.1 ka, the C-14 calender age of strata near the base of the exposed section. Assuming typical slip rates for Basin and Range faults (similar to0.3 mm/yr), these results imply that up to one third, or similar to1 m, of the extensional strain released in the previous earthquake could have reaccumulated across the fault since similar to2.8 ka. However, the contemporary shortening implies that the fault is unloading due to a transient process, whose duration is limited to between 6 years ( geodetic recording time) and 2.8 ka ( the age of the most recent event). These results emphasize the importance of providing accurate geologic data on the timescale of the earthquake cycle in order to evaluate geodetic measurementsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:A. M. Friedrich, J. Lee, B. P. Wernicke, K. Sieh
ISSN:0278-7407
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Tectonics. - ISSN 0278-7407. - 23 (2004), 2, S. 24
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.