• Treffer 1 von 6
Zurück zur Trefferliste

The high energy budget allocations in shocks and gamma ray bursts

  • The statistical distribution of energies among particles responsible for long gamma-ray burst (GRB) emission is analyzed in light of recent results of the Fermi Observatory. The all-sky flux, F., recorded by the Gamma-Ray Burst Monitor (GBM) is shown, despite its larger energy range, to be not significantly larger than that reported by the Burst and Transient Explorer, suggesting a relatively small flux in the 3-30MeV energy range. The present-day energy input rate in gamma-rays recorded by the GBM from long GRBs is found, assuming star formation rates in the literature, to be W(0) = 0.5F gamma H/c = 5x10(42) erg Mpc(-3) yr(-1). The Large Area Telescope fluence, when observed, is about 5%-10% per decade of the total, in good agreement with the predictions of saturated, nonlinear shock acceleration. The high- energy component of long GRBs, as measured by Fermi, is found to contain only similar to 10-2.5 of the energy needed to produce ultrahigh-energy cosmic rays (UHECRs) above 4 EeV, assuming the latter to be extragalactic, whenThe statistical distribution of energies among particles responsible for long gamma-ray burst (GRB) emission is analyzed in light of recent results of the Fermi Observatory. The all-sky flux, F., recorded by the Gamma-Ray Burst Monitor (GBM) is shown, despite its larger energy range, to be not significantly larger than that reported by the Burst and Transient Explorer, suggesting a relatively small flux in the 3-30MeV energy range. The present-day energy input rate in gamma-rays recorded by the GBM from long GRBs is found, assuming star formation rates in the literature, to be W(0) = 0.5F gamma H/c = 5x10(42) erg Mpc(-3) yr(-1). The Large Area Telescope fluence, when observed, is about 5%-10% per decade of the total, in good agreement with the predictions of saturated, nonlinear shock acceleration. The high- energy component of long GRBs, as measured by Fermi, is found to contain only similar to 10-2.5 of the energy needed to produce ultrahigh-energy cosmic rays (UHECRs) above 4 EeV, assuming the latter to be extragalactic, when various numerical factors are carefully included, if the cosmic-ray source spectrum has a spectral index of -2. The observed. - ray fraction of the required UHECR energy is even smaller if the source spectrum is softer than E-2. The AMANDA II limits rule out such a GRB origin for UHECRs if much more than 10(-2) of the cosmic-ray energy goes into neutrinos that are within, and simultaneous with, the gamma-ray beam. It is suggested that "orphan" neutrinos out of the gamma-ray beam might be identifiable via orphan afterglow or other wide angle signatures of GRBs in lieu of coincidence with prompt gamma-rays, and it is recommended that feasible single neutrino trigger criteria be established to search for such coincidences.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:David Eichler, Dafne Guetta, Martin PohlORCiDGND
URL:http://iopscience.iop.org/0004-637X/
DOI:https://doi.org/10.1088/0004-637x/722/1/543
ISSN:0004-637X
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2010
Erscheinungsjahr:2010
Datum der Freischaltung:25.03.2017
Quelle:The astrophysical journal. - ISSN 0004-637X. - 722 (2010), 1, S. 543 - 549
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.