• search hit 9 of 23
Back to Result List

The early B-type star Rho Ophiuchi A is an X-ray lighthouse

  • We present the results of a 140 ks XMM-Newton observation of the B2 star rho Oph A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely correspond to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK (kT similar to 5 keV). From the analysis of its rise, we infer a magnetic field of >= 300 G and a size of the flaring region of similar to 1.4-1.9 x 10(11) cm, which corresponds to similar to 25%-30% of the stellar radius. We speculate that either an intrinsic magnetism that produces a hot spot on its surface or an unknown low mass companion are the source of such X-rays and variability. A hot spot of magnetic origin should be a stable structure over a time spanWe present the results of a 140 ks XMM-Newton observation of the B2 star rho Oph A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely correspond to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK (kT similar to 5 keV). From the analysis of its rise, we infer a magnetic field of >= 300 G and a size of the flaring region of similar to 1.4-1.9 x 10(11) cm, which corresponds to similar to 25%-30% of the stellar radius. We speculate that either an intrinsic magnetism that produces a hot spot on its surface or an unknown low mass companion are the source of such X-rays and variability. A hot spot of magnetic origin should be a stable structure over a time span of >= 2.5 yr, and suggests an overall large scale dipolar magnetic field that produces an extended feature on the stellar surface. In the second scenario, a low mass unknown companion is the emitter of X-rays and it should orbit extremely close to the surface of the primary in a locked spin-orbit configuration, almost on the verge of collapsing onto the primary. As such, the X-ray activity of the secondary star would be enhanced by its young age, and the tight orbit as in RS Cvn systems. In both cases rho Oph would constitute an extreme system that is worthy of further investigation.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ignazio Pillitteri, Scott J. Wolk, Fabio RealeORCiD, Lida OskinovaORCiDGND
DOI:https://doi.org/10.1051/0004-6361/201630070
ISSN:1432-0746
Title of parent work (English):Astronomy and astrophysics : an international weekly journal
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:X-rays: stars; stars: activity; stars: early-type; stars: individual: Rho Ophiuchi; stars: magnetic field; starspots
Volume:602
Number of pages:10
Funding institution:NASA [NAS8-03060]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.