• search hit 3 of 3
Back to Result List

Dictyostelium discoideum CenB is a bona fide centrin essential for nuclear architecture and centrosome stability

  • Centrins are a family of proteins within the calcium-binding EF-hand superfamily. In addition to their archetypical role at the microtubule organizing center (MTOC), centrins have acquired multiple functionalities throughout the course of evolution. For example, centrins have been linked to different nuclear activities, including mRNA export and DNA repair. Dictyostelium discoideum centrin B is a divergent member of the centrin family. At the amino acid level, DdCenB shows 51% identity with its closest relative and only paralog, DdCenA. Phylogenetic analysis revealed that DdCenB and DdCenA form a well-supported monophyletic and divergent group within the centrin family of proteins. Interestingly, fluorescently tagged versions of DdCenB were not found at the centrosome (in whole cells or in isolated centrosomes). Instead, DdCenB localized to the nuclei of interphase cells. This localization disappeared as the cells entered mitosis, although Dictyostelium cells undergo a closed mitosis in which the nuclear envelope (NE) does not breakCentrins are a family of proteins within the calcium-binding EF-hand superfamily. In addition to their archetypical role at the microtubule organizing center (MTOC), centrins have acquired multiple functionalities throughout the course of evolution. For example, centrins have been linked to different nuclear activities, including mRNA export and DNA repair. Dictyostelium discoideum centrin B is a divergent member of the centrin family. At the amino acid level, DdCenB shows 51% identity with its closest relative and only paralog, DdCenA. Phylogenetic analysis revealed that DdCenB and DdCenA form a well-supported monophyletic and divergent group within the centrin family of proteins. Interestingly, fluorescently tagged versions of DdCenB were not found at the centrosome (in whole cells or in isolated centrosomes). Instead, DdCenB localized to the nuclei of interphase cells. This localization disappeared as the cells entered mitosis, although Dictyostelium cells undergo a closed mitosis in which the nuclear envelope (NE) does not break down. DdCenB knockout cells exhibited aberrant nuclear architecture, characterized by enlarged and deformed nuclei and loss of proper centrosome-nucleus anchoring (observed as NE protrusions). At the centrosome, loss of DdCenB resulted in defects in the organization and morphology of the MTOC and supernumerary centrosomes and centrosome-related bodies. The multiple defects that the loss of DdCenB generated at the centrosome can be explained by its atypical division cycle, transitioning into the NE as it divides at mitosis. On the basis of these findings, we propose that DdCenB is required at interphase to maintain proper nuclear architecture, and before delocalizing from the nucleus, DdCenB is part of the centrosome duplication machinery.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sebastian Mana-Capelli, Ralph GräfORCiDGND, Denis A. Larochelle
URL:http://ec.asm.org/
DOI:https://doi.org/10.1128/Ec.00025-09
ISSN:1535-9778
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Eukaryotic cell. - ISSN 1535-9778. - 8 (2009), 8, S. 1106 - 1117
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.