• search hit 3 of 6
Back to Result List

Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin

  • An amperometric biosensor for the determination of glycated hemoglobin in human whole blood is proposed. The principle is based on the electrochemical measurement of ferroceneboronic acid (FcBA) that has been specifically bound to the glycated N-terminus. Hemoglobin is immobilized on a zirconium dioxide nanoparticle modified pyrolytic graphite electrode (PGE) in the presence of didodecyldimethylammonium bromide (DDAB). The incubation of this sensor in FcBA solution leads to the formation of an FcBA-modified surface due to the affinity interaction between boronate and the glycated sites of the hemoglobin. The binding of FcBA results in well-defined redox peaks with an E-0' of 0.299 V versus Ag/AgCl (1 M KCl). The square wave voltammetric response of the bound FcBA reflects the amount of glycated hemoglobin at the surface. This signal increases linearily with the degree of glycated hemoglobin from 6.8 to 14.0% of total immobilized hemoglobin. The scheme was applied to the determination of the fraction of glycated hemoglobin in wholeAn amperometric biosensor for the determination of glycated hemoglobin in human whole blood is proposed. The principle is based on the electrochemical measurement of ferroceneboronic acid (FcBA) that has been specifically bound to the glycated N-terminus. Hemoglobin is immobilized on a zirconium dioxide nanoparticle modified pyrolytic graphite electrode (PGE) in the presence of didodecyldimethylammonium bromide (DDAB). The incubation of this sensor in FcBA solution leads to the formation of an FcBA-modified surface due to the affinity interaction between boronate and the glycated sites of the hemoglobin. The binding of FcBA results in well-defined redox peaks with an E-0' of 0.299 V versus Ag/AgCl (1 M KCl). The square wave voltammetric response of the bound FcBA reflects the amount of glycated hemoglobin at the surface. This signal increases linearily with the degree of glycated hemoglobin from 6.8 to 14.0% of total immobilized hemoglobin. The scheme was applied to the determination of the fraction of glycated hemoglobin in whole blood samples.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Songqin Liu, Ursula WollenbergerORCiDGND, Martin Katterle, Frieder W. SchellerORCiDGND
URL:http://www.sciencedirect.com/science/journal/09254005
DOI:https://doi.org/10.1016/j.snb.2005.07.011
ISSN:0925-4005
Publication type:Article
Language:English
Year of first publication:2006
Publication year:2006
Release date:2017/03/24
Source:Sensors and actuators / B. - ISSN 0925-4005. - 113 (2006), 2, S. 623 - 629
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.