• Treffer 1 von 1
Zurück zur Trefferliste

LASS U-Th-Pb monazite and rutile geochronology of felsic high-pressure granulites (Rhodope, N Greece): Effects of fluid, deformation and metamorphic reactions in local subsystems

  • The specific chemical composition of monazite in shear zones is controlled by the syndeformation dissolution-precipitation reactions of the rock-forming minerals. This relation can be used for dating deformation, even when microfabric characteristics like shape preferred orientation or intracrystalline deformation of monazite itself are missing. Monazite contemporaneously formed in and around the shear zones may have different compositions. These depend on the local chemical context rather than reflecting successive crystallization episodes of monazite. This is demonstrated in polymetamorphic, mylonitic high-pressure (HP) garnet-kyanite granulites of the Alpine Sidironero Complex (Rhodope UHP terrain, Northern Greece). The studied mylonitic rocks escaped from regional migmatization at 40-36 Ma and from subsequent shearing through cooling until 36 Ma. In-situ laser-ablation split-stream inductively-coupled plasma mass spectrometry (LASS) analyses have been carried out on monazite from micro-scale shear zones, from pre-myloniticThe specific chemical composition of monazite in shear zones is controlled by the syndeformation dissolution-precipitation reactions of the rock-forming minerals. This relation can be used for dating deformation, even when microfabric characteristics like shape preferred orientation or intracrystalline deformation of monazite itself are missing. Monazite contemporaneously formed in and around the shear zones may have different compositions. These depend on the local chemical context rather than reflecting successive crystallization episodes of monazite. This is demonstrated in polymetamorphic, mylonitic high-pressure (HP) garnet-kyanite granulites of the Alpine Sidironero Complex (Rhodope UHP terrain, Northern Greece). The studied mylonitic rocks escaped from regional migmatization at 40-36 Ma and from subsequent shearing through cooling until 36 Ma. In-situ laser-ablation split-stream inductively-coupled plasma mass spectrometry (LASS) analyses have been carried out on monazite from micro-scale shear zones, from pre-mylonitic microlithons as well as of monazite inclusions in relictic minerals complimented by U-Pb data on rutile and Rb-Sr data of biotite. Two major metamorphic episodes, Mesozoic and Cenozoic, are constrained. Chemical compositions, isotopic characteristics and apparent ages systematically vary among monazite of four different microfabric domains (I-IV). Within three pre-mylonitic domains (inclusions in (I) pre-mylonitic kyanite and (II) garnet porphyroclasts, and (III) in pre-mylonitic microlithons) monazite yields ages of ca. 130-150 Ma for HP-granulite metamorphism, in line with previous geochronological results in the area. Patchy alteration of the pre-mylonitic monazite by intra-grain dissolution-precipitation processes variably increased negative Eu anomaly and reduced the HREE contents. The apparent age of this altered monazite is reduced. Monazite in the syn-mylonitic shear bands (IV) differs in chemical composition from unaltered and altered monazite of the three pre-mylonitic domains by having a significantly more pronounced negative Eu anomaly, a flatter HREE pattern, and high Th content. These compositional characteristics are linked with syn-mylonitic formation of plagioclase and resorption of garnet in the shear bands under amphibolite fades conditions. The absence of pre-mylonitic monazite in the shear zones, in contrast to the other domains, suggests complete dissolution of old and formation of new monazite. This probably results from an increased alkalinity and reactivity of the fluid that again is controlled by syn-mylonitic interaction with feldspar and apatite in the shear zones. There, the deformation was accommodated by dissolution precipitation creep at ca. 690 +/- 50 degrees C and 6-7.5 kbar. Growth of monazite at 55 +/- 1 Ma dates this deformation, which precedes the regional migmatization of the Sidironero Complex, whereas rutile and biotite ages reflect these later stages. This new pressure-temperature-time constraint for a relictic deformation structure provides insight into the still missing parts of the overall metamorphic, deformation and exhumation processes of the UHP units in the Rhodope. (C) 2015 Elsevier B.V. All rights reserved.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Nicole Wawrzenitz, Alexander Krohe, Ioannis Baziotis, Evripidis Mposkos, Andrew R. C. Kylander-Clark, Rolf L. Romer
DOI:https://doi.org/10.1016/j.lithos.2015.06.029
ISSN:0024-4937
ISSN:1872-6143
Titel des übergeordneten Werks (Englisch):Lithos : an international journal of mineralogy, petrology, and geochemistry
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Freies Schlagwort / Tag:Creep; Dissolution precipitation replacement; Fluid-rock interaction; HP-granulite; In-situ Laser Ablation Split Stream ICPMS; UHP exhumation
Band:232
Seitenanzahl:20
Erste Seite:266
Letzte Seite:285
Fördernde Institution:German Science Foundation (Research Group FOR741 "Nanoscale processes") [RO-2084/-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer Review:Referiert
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.