• search hit 7 of 55
Back to Result List

An Open Virtual Machine for Cross-Platform Weather Radar Science

  • In a recent BAMS article, it is argued that community-based Open Source Software (OSS) could foster scientific progress in weather radar research, and make weather radar software more affordable, flexible, transparent, sustainable, and interoperable.Nevertheless, it can be challenging for potential developers and users to realize these benefits: tools are often cumbersome to install; different operating systems may have particular issues, or may not be supported at all; and many tools have steep learning curves.To overcome some of these barriers, we present an open, community-based virtual machine (VM). This VM can be run on any operating system, and guarantees reproducibility of results across platforms. It contains a suite of independent OSS weather radar tools (BALTRAD, Py-ART, wradlib, RSL, and Radx), and a scientific Python stack. Furthermore, it features a suite of recipes that work out of the box and provide guidance on how to use the different OSS tools alone and together. The code to build the VM from source is hosted onIn a recent BAMS article, it is argued that community-based Open Source Software (OSS) could foster scientific progress in weather radar research, and make weather radar software more affordable, flexible, transparent, sustainable, and interoperable.Nevertheless, it can be challenging for potential developers and users to realize these benefits: tools are often cumbersome to install; different operating systems may have particular issues, or may not be supported at all; and many tools have steep learning curves.To overcome some of these barriers, we present an open, community-based virtual machine (VM). This VM can be run on any operating system, and guarantees reproducibility of results across platforms. It contains a suite of independent OSS weather radar tools (BALTRAD, Py-ART, wradlib, RSL, and Radx), and a scientific Python stack. Furthermore, it features a suite of recipes that work out of the box and provide guidance on how to use the different OSS tools alone and together. The code to build the VM from source is hosted on GitHub, which allows the VM to grow with its community.We argue that the VM presents another step toward Open (Weather Radar) Science. It can be used as a quick way to get started, for teaching, or for benchmarking and combining different tools. It can foster the idea of reproducible research in scientific publishing. Being scalable and extendable, it might even allow for real-time data processing.We expect the VM to catalyze progress toward interoperability, and to lower the barrier for new users and developers, thus extending the weather radar community and user base.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Maik HeistermannORCiDGND, Scott Collis, M. J. Dixon, Jonathan J. Helmus, A. Henja, Daniel B. Michelson, Thomas Pfaff
DOI:https://doi.org/10.1175/BAMS-D-14-00220.1
ISSN:0003-0007
ISSN:1520-0477
Title of parent work (English):Bulletin of the American Meteorological Society
Publisher:American Meteorological Soc.
Place of publishing:Boston
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:96
Issue:10
Number of pages:6
Funding institution:European Union; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-06CH11357]; German Federal Ministry for Research and Education
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.