• search hit 5 of 71
Back to Result List

AMPLIFICATION OF COLLECTIVE MAGNETIC FLUCTUATIONS IN MAGNETIZED BI-MAXWELLIAN PLASMAS FOR PARALLEL WAVE VECTORS. I. ELECTRON-PROTON PLASMA

  • The general electromagnetic fluctuation theory is a powerful tool to analyze the magnetic fluctuation spectrum of a plasma. Recent works utilizing this theory for a magnetized non-relativistic isotropic Maxwellian electron-proton plasma have demonstrated that the equilibrium ratio of vertical bar delta B vertical bar/B-0 can be as high as 10(-12). This value results from the balance between spontaneous emission of fluctuations and their damping, and it is considerably smaller than the observed value vertical bar delta B vertical bar/B-0 in the solar wind at 1 au, where 10(-3) less than or similar to vertical bar delta B vertical bar/B-0 less than or similar to 10(-1). In the present manuscript, we consider an anisotropic bi-Maxwellian distribution function to investigate the effect of plasma instabilities on the magnetic field fluctuations. We demonstrate that these instabilities strongly amplify the magnetic field fluctuations and provide a sufficient mechanism to explain the observed value of vertical bar delta B vertical bar/B-0 inThe general electromagnetic fluctuation theory is a powerful tool to analyze the magnetic fluctuation spectrum of a plasma. Recent works utilizing this theory for a magnetized non-relativistic isotropic Maxwellian electron-proton plasma have demonstrated that the equilibrium ratio of vertical bar delta B vertical bar/B-0 can be as high as 10(-12). This value results from the balance between spontaneous emission of fluctuations and their damping, and it is considerably smaller than the observed value vertical bar delta B vertical bar/B-0 in the solar wind at 1 au, where 10(-3) less than or similar to vertical bar delta B vertical bar/B-0 less than or similar to 10(-1). In the present manuscript, we consider an anisotropic bi-Maxwellian distribution function to investigate the effect of plasma instabilities on the magnetic field fluctuations. We demonstrate that these instabilities strongly amplify the magnetic field fluctuations and provide a sufficient mechanism to explain the observed value of vertical bar delta B vertical bar/B-0 in the solar wind at 1 au.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sergei VafinORCiDGND, R. Schlickeiser, P. H. Yoon
DOI:https://doi.org/10.3847/0004-637X/829/1/41
ISSN:0004-637X
ISSN:1538-4357
Title of parent work (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:instabilities; magnetic fields; solar wind; turbulence; waves
Volume:829
Number of pages:8
Funding institution:Deutsche Forschungsgemeinschaft [Schl 201/31-1, Schl 21/32-1]; NSF [AGS1550566]; BK21 plus program through the National Research Foundation (NRF) - Ministry of Education of Korea; Ruhr University Research School
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.