• search hit 8 of 15
Back to Result List

Diffusion of a passive scalar by convective flows under parametric disorder

  • We study transport of a weakly diffusive pollutant (a passive scalar) through thermoconvective flow in a fluid- saturated horizontal porous layer heated from below under frozen parametric disorder. In the presence of disorder (random frozen inhomogeneities of the heating or of macroscopic properties of the porous matrix), spatially localized flow patterns appear below the convective instability threshold of the system without disorder. Thermoconvective. ows crucially affect the transport of a pollutant along the layer, especially when its molecular diffusion is weak. The effective (or eddy) diffusivity also allows us to observe the transition from a set of localized currents to an almost everywhere intense 'global' flow. We present results of numerical calculation of the effective diffusivity and discuss them in the context of localization of fluid currents and the transition to a 'global' flow. Our numerical findings are in good agreement with the analytical theory that we develop for the limit of a small molecular diffusivity andWe study transport of a weakly diffusive pollutant (a passive scalar) through thermoconvective flow in a fluid- saturated horizontal porous layer heated from below under frozen parametric disorder. In the presence of disorder (random frozen inhomogeneities of the heating or of macroscopic properties of the porous matrix), spatially localized flow patterns appear below the convective instability threshold of the system without disorder. Thermoconvective. ows crucially affect the transport of a pollutant along the layer, especially when its molecular diffusion is weak. The effective (or eddy) diffusivity also allows us to observe the transition from a set of localized currents to an almost everywhere intense 'global' flow. We present results of numerical calculation of the effective diffusivity and discuss them in the context of localization of fluid currents and the transition to a 'global' flow. Our numerical findings are in good agreement with the analytical theory that we develop for the limit of a small molecular diffusivity and sparse domains of localized currents. Though the results are obtained for a specific physical system, they are relevant for a broad variety of fluid dynamical systems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Denis S. GoldobinGND, Elizaveta V. Shklyaeva
URL:http://iopscience.iop.org/1742-5468/
DOI:https://doi.org/10.1088/1742-5468/2009/01/P01024
ISSN:1742-5468
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Journal of statistical mechanics : theory and experiment. - ISSN 1742-5468. - (2009), 1, Art. P01024
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.