• search hit 3 of 3
Back to Result List

Quenching mechanism of uranyl(VI) by chloride and bromide in aqueous and non-aqueous solutions

  • A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X-2(center dot-) and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI)A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X-2(center dot-) and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Toni HaubitzORCiDGND, Björn DrobotORCiDGND, Satoru TsushimaORCiD, Robin SteudtnerORCiD, Thorsten StumpfORCiDGND, Michael Uwe KumkeORCiDGND
DOI:https://doi.org/10.1021/acs.jpca.1c02487
ISSN:1089-5639
ISSN:1520-5215
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/33983019
Title of parent work (English):The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2021/05/13
Publication year:2021
Release date:2024/05/23
Volume:125
Issue:20
Number of pages:10
First page:4380
Last Page:4389
Funding institution:Federal Ministry for Economic Affairs and Energy [02E11415F, 02E11860]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.