• Treffer 1 von 1
Zurück zur Trefferliste

Strain Localization and Weakening Processes in Viscously Deforming Rocks

  • Localization processes in the viscous lower crust generate ductile shear zones over a broad range of scales affecting long‐term lithosphere deformation and the mechanical response of faults during the seismic cycle. Here we use centimeter‐scale numerical models in order to gain detailed insight into the processes involved in strain localization and rheological weakening in viscously deforming rocks. Our 2‐D Cartesian models are benchmarked to high‐temperature and high‐pressure torsion experiments on Carrara marble samples containing a single weak Solnhofen limestone inclusion. The models successfully reproduce bulk stress‐strain transients and final strain distributions observed in the experiments by applying a simple, first‐order softening law that mimics rheological weakening. We find that local stress concentrations forming at the inclusion tips initiate strain localization inside the host matrix. At the tip of the propagating shear zone, weakening occurs within a process zone, which expands with time from the inclusion tips towardLocalization processes in the viscous lower crust generate ductile shear zones over a broad range of scales affecting long‐term lithosphere deformation and the mechanical response of faults during the seismic cycle. Here we use centimeter‐scale numerical models in order to gain detailed insight into the processes involved in strain localization and rheological weakening in viscously deforming rocks. Our 2‐D Cartesian models are benchmarked to high‐temperature and high‐pressure torsion experiments on Carrara marble samples containing a single weak Solnhofen limestone inclusion. The models successfully reproduce bulk stress‐strain transients and final strain distributions observed in the experiments by applying a simple, first‐order softening law that mimics rheological weakening. We find that local stress concentrations forming at the inclusion tips initiate strain localization inside the host matrix. At the tip of the propagating shear zone, weakening occurs within a process zone, which expands with time from the inclusion tips toward the matrix. Rheological weakening is a precondition for shear zone localization, and the width of this shear zone is found to be controlled by the degree of softening. Introducing a second softening step at elevated strain, a high strain layer develops inside the localized shear zone, analogous to the formation of ultramylonite bands in mylonites. These results elucidate the transient evolution of stress and strain rate during inception and maturation of ductile shear zones.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Maximilian J.E.A. DöhmannORCiD, Sascha BruneORCiDGND, Livia Nardini, Erik RybackiORCiDGND, Georg DresenORCiDGND
DOI:https://doi.org/10.1029/2018JB016917
ISSN:0148-0227
ISSN:2169-9356
Titel des übergeordneten Werks (Englisch):Journal of geophysical research : JGR
Untertitel (Englisch):Numerical Modeling Based on Laboratory Torsion Experiments
Verlag:Union
Verlagsort:Washington, DC
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:20.10.2018
Erscheinungsjahr:2019
Datum der Freischaltung:01.09.2020
Freies Schlagwort / Tag:2-D numerical model; dislocation creep; rheological weakening; strain localization; torsion; two phase aggregates
Band:124
Ausgabe:1
Seitenanzahl:17
Erste Seite:1120
Letzte Seite:1137
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Externe Anmerkung:This article is part of this cumulative dissertation
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.