• Treffer 2 von 2
Zurück zur Trefferliste

Thermomechanical model reconciles contradictory geophysical observations at the Dead Sea Basin

  • The Dead Sea Transform (DST) comprises a boundary between the African and Arabian plates. During the last 15-20 m.y. more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Widespread igneous activity since some 20 Ma ago and especially in the last 5 m.y., thin (60-80 km) lithosphere constrained by seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow values of less than 50-60 mW/m(2) and deep seismicity in the lower crust (deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what we call the "DST heat-flow paradox," we have developed a numerical model that assumes an erosion of initially thick and cold lithosphere just before or duringThe Dead Sea Transform (DST) comprises a boundary between the African and Arabian plates. During the last 15-20 m.y. more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Widespread igneous activity since some 20 Ma ago and especially in the last 5 m.y., thin (60-80 km) lithosphere constrained by seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow values of less than 50-60 mW/m(2) and deep seismicity in the lower crust (deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what we call the "DST heat-flow paradox," we have developed a numerical model that assumes an erosion of initially thick and cold lithosphere just before or during the active faulting at the DST. The optimal initial conditions for the model are defined using transient thermal analysis. From the results of our numerical experiments we conclude that the entire set of observations for the DSB can be explained within the classical pull-apart model assuming that the lithosphere has been thermally eroded at about 20 Ma and the uppermost mantle in the region have relatively weak rheology consistent with experimental data for wet olivine or pyroxenite.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Alexey G. Petrunin, Ernesto Meneses Rioseco, Stephan Vladimir SobolevORCiDGND, Michael H. WeberORCiDGND
DOI:https://doi.org/10.1029/2011GC003929
ISSN:1525-2027
Titel des übergeordneten Werks (Englisch):Geochemistry, geophysics, geosystems
Verlag:American Geophysical Union
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2012
Erscheinungsjahr:2012
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:heat flow; pull-apart basin; tectonophysics; thermomechanical modeling; transform fault
Band:13
Ausgabe:8
Seitenanzahl:15
Fördernde Institution:Deutsche Forschungsgemeinschaft; GeoForschungsZentrum Potsdam
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer Review:Referiert
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.