• search hit 10 of 189
Back to Result List

Toward automated delineation of ground-penetrating radar facies in clastic sediments: An example from stratified glaciofluvial deposits

  • Ground-penetrating radar (GPR) is an established geophysical method to explore near-surface sedimentary environments. Interpreting GPR images is largely based on manual procedures following concepts known as GPR facies analysis. We have developed a novel strategy to distinguish GPR facies in a largely automated and more objective manner. First, we calculate 13 textural attributes to quantify GPR reflection characteristics. Then, this database is reduced using principal component analysis. Finally, we image the dominating principal components using composite imaging and classify them using standard clustering methods. The potential of this work-flow is evaluated using a 2D GPR field example collected across stratified glaciofluvial deposits. Our results demonstrate that the derived facies images are well correlated with the composition and the porosity of the sediments as known from independent borehole logs. Our analysis strategy eases and improves the interpretability of GPR data and will help in a variety of geologic andGround-penetrating radar (GPR) is an established geophysical method to explore near-surface sedimentary environments. Interpreting GPR images is largely based on manual procedures following concepts known as GPR facies analysis. We have developed a novel strategy to distinguish GPR facies in a largely automated and more objective manner. First, we calculate 13 textural attributes to quantify GPR reflection characteristics. Then, this database is reduced using principal component analysis. Finally, we image the dominating principal components using composite imaging and classify them using standard clustering methods. The potential of this work-flow is evaluated using a 2D GPR field example collected across stratified glaciofluvial deposits. Our results demonstrate that the derived facies images are well correlated with the composition and the porosity of the sediments as known from independent borehole logs. Our analysis strategy eases and improves the interpretability of GPR data and will help in a variety of geologic and hydrological problems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jens TronickeORCiDGND, Niklas AllroggenORCiDGND
DOI:https://doi.org/10.1190/GEO2015-0188.1
ISSN:0016-8033
ISSN:1942-2156
Title of parent work (English):Geophysics
Publisher:Society of Exploration Geophysicists
Place of publishing:Tulsa
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:80
Issue:4
Number of pages:6
First page:A89
Last Page:A94
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.