• search hit 5 of 22
Back to Result List

Crustal structure of northwest Namibia: Evidence for plume-rift-continent interaction

  • The causes for the formation of large igneous provinces and hotspot trails are still a matter of considerable dispute. Seismic tomography and other studies suggest that hot mantle material rising from the core-mantle boundary (CMB) might play a significant role in the formation of such hotspot trails. An important area to verify this concept is the South Atlantic region, with hotspot trails that spatially coincide with one of the largest low-velocity regions at the CMB, the African large low shear-wave velocity province. The Walvis Ridge started to form during the separation of the South American and African continents at ca. 130 Ma as a consequence of Gondwana breakup. Here, we present the first deep-seismic sounding images of the crustal structure from the landfall area of the Walvis Ridge at the Namibian coast to constrain processes of plume-lithosphere interaction and the formation of continental flood basalts (Parana and Etendeka continental flood basalts) and associated intrusive rocks. Our study identified a narrow region (<100The causes for the formation of large igneous provinces and hotspot trails are still a matter of considerable dispute. Seismic tomography and other studies suggest that hot mantle material rising from the core-mantle boundary (CMB) might play a significant role in the formation of such hotspot trails. An important area to verify this concept is the South Atlantic region, with hotspot trails that spatially coincide with one of the largest low-velocity regions at the CMB, the African large low shear-wave velocity province. The Walvis Ridge started to form during the separation of the South American and African continents at ca. 130 Ma as a consequence of Gondwana breakup. Here, we present the first deep-seismic sounding images of the crustal structure from the landfall area of the Walvis Ridge at the Namibian coast to constrain processes of plume-lithosphere interaction and the formation of continental flood basalts (Parana and Etendeka continental flood basalts) and associated intrusive rocks. Our study identified a narrow region (<100 km) of high-seismic-velocity anomalies in the middle and lower crust, which we interpret as a massive mafic intrusion into the northern Namibian continental crust. Seismic crustal reflection imaging shows a flat Moho as well as reflectors connecting the high-velocity body with shallow crustal structures that we speculate to mark potential feeder channels of the Etendeka continental flood basalt. We suggest that the observed massive but localized mafic intrusion into the lower crust results from similar-sized variations in the lithosphere (i.e., lithosphere thickness or preexisting structures).show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Trond Ryberg, Christian HaberlandORCiDGND, Thomas Haberlau, Michael H. WeberORCiDGND, Klaus BauerORCiDGND, Jan H. Behrmann, Wilfried Jokat
DOI:https://doi.org/10.1130/G36768.1
ISSN:0091-7613
ISSN:1943-2682
Title of parent work (English):Geology
Publisher:American Institute of Physics
Place of publishing:Boulder
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:43
Issue:8
Number of pages:4
First page:739
Last Page:742
Funding institution:Deutsche Forschungsgemeinschaft [RY 12/9-1, RY 12/9-2]; GeoForschungsZentrum Potsdam (GFZ); South Atlantic Margin Processes and Links with Onshore Evolution (SAMPLE) [SPP1375]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.