• search hit 1 of 2
Back to Result List

Kinematic study of Iquique 2014 M-w 8.1 earthquake

  • We study the rupture processes of Iquique earthquake M-w 8.1 (2014/04/01) and its largest aftershock M-w 7.7 (2014/04/03) that ruptured the North Chile subduction zone. High-rate Global Positioning System (GPS) recordings and strong motion data are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earthquakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes from the inversion of the estimated static displacements and then, kinematic inversions in the frequency domain are carried out taken into account this prior information. The preferred model for the mainshock exhibits a seismic moment of 1.73 x 10(21) Nm (M-w 8.1) and maximum slip of similar to 9 m, while the aftershock model has a seismic moment of 3.88 x 10(20) (M-w 7.7) and a maximum slip of similar to 3 m. For both earthquakes, the final slip distributions show two asperities (a shallow one and a deep one) separated by an area with significant slip deficit. This suggests a segmentationWe study the rupture processes of Iquique earthquake M-w 8.1 (2014/04/01) and its largest aftershock M-w 7.7 (2014/04/03) that ruptured the North Chile subduction zone. High-rate Global Positioning System (GPS) recordings and strong motion data are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earthquakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes from the inversion of the estimated static displacements and then, kinematic inversions in the frequency domain are carried out taken into account this prior information. The preferred model for the mainshock exhibits a seismic moment of 1.73 x 10(21) Nm (M-w 8.1) and maximum slip of similar to 9 m, while the aftershock model has a seismic moment of 3.88 x 10(20) (M-w 7.7) and a maximum slip of similar to 3 m. For both earthquakes, the final slip distributions show two asperities (a shallow one and a deep one) separated by an area with significant slip deficit. This suggests a segmentation along-dip which might be related to a change of the dipping angle of the subducting slab inferred from gravimetric data. Along-strike, the areas where the seismic ruptures stopped seem to be well correlated with geological features observed from geophysical information (high-resolution bathymetry, gravimetry and coupling maps) that are representative of the long-term segmentation of the subduction margin. Considering the spatially limited portions that were broken by these two earthquakes, our results support the idea that the seismic gap is not filled yet. (C) 2018 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jorge JaraORCiD, Hugo Sanchez-ReyesORCiD, Anne SocquetORCiD, Fabrice Pierre CottonORCiDGND, Jean Virieux, Andrei Maksymowicz, John Diaz-Mojica, Andrea Walpersdorf, Javier RuizORCiD, Nathalie Cotte, Edmundo NorabuenaORCiD
DOI:https://doi.org/10.1016/j.epsl.2018.09.025
ISSN:0012-821X
ISSN:1385-013X
Title of parent work (English):Earth & planetary science letters
Subtitle (English):Understanding the segmentation of the seismogenic zone
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2018/10/04
Publication year:2018
Release date:2021/06/17
Tag:high-rate GPS; kinematic inversion; megathrust earthquakes; strong Motion; subduction segmentation
Volume:503
Number of pages:13
First page:131
Last Page:143
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.