Male Knock-in Mice Expressing an Arachidonic Acid Lipoxygenase 15B (Alox15B) with Humanized Reaction Specificity Are Prematurely Growth Arrested When Aging

  • Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normallyMammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marjänn Helena SchäferORCiDGND, Kumar Reddy KakularamORCiD, Florian ReischORCiD, Michael RotheORCiD, Sabine StehlingORCiD, Dagmar HeydeckORCiD, Gerhard Paul PüschelORCiDGND, Hartmut KuhnORCiD
DOI:https://doi.org/10.3390/biomedicines10061379
ISSN:2227-9059
Title of parent work (English):Biomedicines
Publisher:MDPI
Place of publishing:Basel, Schweiz
Publication type:Article
Language:English
Date of first publication:2022/06/10
Publication year:2022
Release date:2023/01/24
Tag:eicosanoids; erythropoiesis; lipid peroxidation; oxidative stress; polyenoic fatty acids
Volume:10
Article number:1379
Print run:6
Number of pages:22
First page:1
Last Page:22
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Extern / Extern
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer review:Referiert
Grantor:Publikationsfonds der Universität Potsdam
Publishing method:Open Access / Gold Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Zweitveröffentlichung in der Schriftenreihe Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 1295
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.