Applications of machine learning and open geospatial data in flood risk modelling

  • Technological progress allows for producing ever more complex predictive models on the basis of increasingly big datasets. For risk management of natural hazards, a multitude of models is needed as basis for decision-making, e.g. in the evaluation of observational data, for the prediction of hazard scenarios, or for statistical estimates of expected damage. The question arises, how modern modelling approaches like machine learning or data-mining can be meaningfully deployed in this thematic field. In addition, with respect to data availability and accessibility, the trend is towards open data. Topic of this thesis is therefore to investigate the possibilities and limitations of machine learning and open geospatial data in the field of flood risk modelling in the broad sense. As this overarching topic is broad in scope, individual relevant aspects are identified and inspected in detail. A prominent data source in the flood context is satellite-based mapping of inundated areas, for example made openly available by the CopernicusTechnological progress allows for producing ever more complex predictive models on the basis of increasingly big datasets. For risk management of natural hazards, a multitude of models is needed as basis for decision-making, e.g. in the evaluation of observational data, for the prediction of hazard scenarios, or for statistical estimates of expected damage. The question arises, how modern modelling approaches like machine learning or data-mining can be meaningfully deployed in this thematic field. In addition, with respect to data availability and accessibility, the trend is towards open data. Topic of this thesis is therefore to investigate the possibilities and limitations of machine learning and open geospatial data in the field of flood risk modelling in the broad sense. As this overarching topic is broad in scope, individual relevant aspects are identified and inspected in detail. A prominent data source in the flood context is satellite-based mapping of inundated areas, for example made openly available by the Copernicus service of the European Union. Great expectations are directed towards these products in scientific literature, both for acute support of relief forces during emergency response action, and for modelling via hydrodynamic models or for damage estimation. Therefore, a focus of this work was set on evaluating these flood masks. From the observation that the quality of these products is insufficient in forested and built-up areas, a procedure for subsequent improvement via machine learning was developed. This procedure is based on a classification algorithm that only requires training data from a particular class to be predicted, in this specific case data of flooded areas, but not of the negative class (dry areas). The application for hurricane Harvey in Houston shows the high potential of this method, which depends on the quality of the initial flood mask. Next, it is investigated how much the predicted statistical risk from a process-based model chain is dependent on implemented physical process details. Thereby it is demonstrated what a risk study based on established models can deliver. Even for fluvial flooding, such model chains are already quite complex, though, and are hardly available for compound or cascading events comprising torrential rainfall, flash floods, and other processes. In the fourth chapter of this thesis it is therefore tested whether machine learning based on comprehensive damage data can offer a more direct path towards damage modelling, that avoids explicit conception of such a model chain. For that purpose, a state-collected dataset of damaged buildings from the severe El Niño event 2017 in Peru is used. In this context, the possibilities of data-mining for extracting process knowledge are explored as well. It can be shown that various openly available geodata sources contain useful information for flood hazard and damage modelling for complex events, e.g. satellite-based rainfall measurements, topographic and hydrographic information, mapped settlement areas, as well as indicators from spectral data. Further, insights on damaging processes are discovered, which mainly are in line with prior expectations. The maximum intensity of rainfall, for example, acts stronger in cities and steep canyons, while the sum of rain was found more informative in low-lying river catchments and forested areas. Rural areas of Peru exhibited higher vulnerability in the presented study compared to urban areas. However, the general limitations of the methods and the dependence on specific datasets and algorithms also become obvious. In the overarching discussion, the different methods – process-based modelling, predictive machine learning, and data-mining – are evaluated with respect to the overall research questions. In the case of hazard observation it seems that a focus on novel algorithms makes sense for future research. In the subtopic of hazard modelling, especially for river floods, the improvement of physical models and the integration of process-based and statistical procedures is suggested. For damage modelling the large and representative datasets necessary for the broad application of machine learning are still lacking. Therefore, the improvement of the data basis in the field of damage is currently regarded as more important than the selection of algorithms.show moreshow less
  • Der technologische Fortschritt erlaubt es, zunehmend komplexe Vorhersagemodelle auf Basis immer größerer Datensätze zu produzieren. Für das Risikomanagement von Naturgefahren sind eine Vielzahl von Modellen als Entscheidungsgrundlage notwendig, z.B. in der Auswertung von Beobachtungsdaten, für die Vorhersage von Gefahrenszenarien, oder zur statistischen Abschätzung der zu erwartenden Schäden. Es stellt sich also die Frage, inwiefern moderne Modellierungsansätze wie das maschinelle Lernen oder Data-Mining in diesem Themenbereich sinnvoll eingesetzt werden können. Zusätzlich ist im Hinblick auf die Datenverfügbarkeit und -zugänglichkeit ein Trend zur Öffnung (open data) zu beobachten. Thema dieser Arbeit ist daher, die Möglichkeiten und Grenzen des maschinellen Lernens und frei verfügbarer Geodaten auf dem Gebiet der Hochwasserrisikomodellierung im weiteren Sinne zu untersuchen. Da dieses übergeordnete Thema sehr breit ist, werden einzelne relevante Aspekte herausgearbeitet und detailliert betrachtet. Eine prominente Datenquelle imDer technologische Fortschritt erlaubt es, zunehmend komplexe Vorhersagemodelle auf Basis immer größerer Datensätze zu produzieren. Für das Risikomanagement von Naturgefahren sind eine Vielzahl von Modellen als Entscheidungsgrundlage notwendig, z.B. in der Auswertung von Beobachtungsdaten, für die Vorhersage von Gefahrenszenarien, oder zur statistischen Abschätzung der zu erwartenden Schäden. Es stellt sich also die Frage, inwiefern moderne Modellierungsansätze wie das maschinelle Lernen oder Data-Mining in diesem Themenbereich sinnvoll eingesetzt werden können. Zusätzlich ist im Hinblick auf die Datenverfügbarkeit und -zugänglichkeit ein Trend zur Öffnung (open data) zu beobachten. Thema dieser Arbeit ist daher, die Möglichkeiten und Grenzen des maschinellen Lernens und frei verfügbarer Geodaten auf dem Gebiet der Hochwasserrisikomodellierung im weiteren Sinne zu untersuchen. Da dieses übergeordnete Thema sehr breit ist, werden einzelne relevante Aspekte herausgearbeitet und detailliert betrachtet. Eine prominente Datenquelle im Bereich Hochwasser ist die satellitenbasierte Kartierung von Überflutungsflächen, die z.B. über den Copernicus Service der Europäischen Union frei zur Verfügung gestellt werden. Große Hoffnungen werden in der wissenschaftlichen Literatur in diese Produkte gesetzt, sowohl für die akute Unterstützung der Einsatzkräfte im Katastrophenfall, als auch in der Modellierung mittels hydrodynamischer Modelle oder zur Schadensabschätzung. Daher wurde ein Fokus in dieser Arbeit auf die Untersuchung dieser Flutmasken gelegt. Aus der Beobachtung, dass die Qualität dieser Produkte in bewaldeten und urbanen Gebieten unzureichend ist, wurde ein Verfahren zur nachträglichenVerbesserung mittels maschinellem Lernen entwickelt. Das Verfahren basiert auf einem Klassifikationsalgorithmus der nur Trainingsdaten von einer vorherzusagenden Klasse benötigt, im konkreten Fall also Daten von Überflutungsflächen, nicht jedoch von der negativen Klasse (trockene Gebiete). Die Anwendung für Hurricane Harvey in Houston zeigt großes Potenzial der Methode, abhängig von der Qualität der ursprünglichen Flutmaske. Anschließend wird anhand einer prozessbasierten Modellkette untersucht, welchen Einfluss implementierte physikalische Prozessdetails auf das vorhergesagte statistische Risiko haben. Es wird anschaulich gezeigt, was eine Risikostudie basierend auf etablierten Modellen leisten kann. Solche Modellketten sind allerdings bereits für Flusshochwasser sehr komplex, und für zusammengesetzte oder kaskadierende Ereignisse mit Starkregen, Sturzfluten, und weiteren Prozessen, kaum vorhanden. Im vierten Kapitel dieser Arbeit wird daher getestet, ob maschinelles Lernen auf Basis von vollständigen Schadensdaten einen direkteren Weg zur Schadensmodellierung ermöglicht, der die explizite Konzeption einer solchen Modellkette umgeht. Dazu wird ein staatlich erhobener Datensatz der geschädigten Gebäude während des schweren El Niño Ereignisses 2017 in Peru verwendet. In diesem Kontext werden auch die Möglichkeiten des Data-Mining zur Extraktion von Prozessverständnis ausgelotet. Es kann gezeigt werden, dass diverse frei verfügbare Geodaten nützliche Informationen für die Gefahren- und Schadensmodellierung von komplexen Flutereignissen liefern, z.B. satellitenbasierte Regenmessungen, topographische und hydrographische Information, kartierte Siedlungsflächen, sowie Indikatoren aus Spektraldaten. Zudem zeigen sich Erkenntnisse zu den Schädigungsprozessen, die im Wesentlichen mit den vorherigen Erwartungen in Einklang stehen. Die maximale Regenintensität wirkt beispielsweise in Städten und steilen Schluchten stärker schädigend, während die Niederschlagssumme in tiefliegenden Flussgebieten und bewaldeten Regionen als aussagekräftiger befunden wurde. Ländliche Gebiete in Peru weisen in der präsentierten Studie eine höhere Vulnerabilität als die Stadtgebiete auf. Jedoch werden auch die grundsätzlichen Grenzen der Methodik und die Abhängigkeit von spezifischen Datensätzen and Algorithmen offenkundig. In der übergreifenden Diskussion werden schließlich die verschiedenen Methoden – prozessbasierte Modellierung, prädiktives maschinelles Lernen, und Data-Mining – mit Blick auf die Gesamtfragestellungen evaluiert. Im Bereich der Gefahrenbeobachtung scheint eine Fokussierung auf neue Algorithmen sinnvoll. Im Bereich der Gefahrenmodellierung, insbesondere für Flusshochwasser, wird eher die Verbesserung von physikalischen Modellen, oder die Integration von prozessbasierten und statistischen Verfahren angeraten. In der Schadensmodellierung fehlen nach wie vor die großen repräsentativen Datensätze, die für eine breite Anwendung von maschinellem Lernen Voraussetzung ist. Daher ist die Verbesserung der Datengrundlage im Bereich der Schäden derzeit als wichtiger einzustufen als die Auswahl der Algorithmen.show moreshow less

Download full text files

  • SHA-512:4e99b74517b1eb7862cdc28060c886bf020df6553cb5c0b1c269e3c4d93039e4841d84d238eed526214f10664809045602a550965f7534543acfbcba4464a009

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author details:Fabio Alexander BrillORCiD
URN:urn:nbn:de:kobv:517-opus4-555943
DOI:https://doi.org/10.25932/publishup-55594
Reviewer(s):Bruno MerzORCiDGND, Heidi KreibichORCiDGND, Guy J.-P. SchumannORCiDGND
Supervisor(s):Bruno Merz, Heidi Kreibich
Publication type:Doctoral Thesis
Language:English
Date of first publication:2022/07/28
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/06/17
Release date:2022/07/28
Tag:Data-Mining; Hochwasserrisiko; Schadensmodellierung; maschinelles Lernen; offene Daten
damage modelling; data-mining; flood risk; machine learning; open data
Number of pages:xix, 124
RVK - Regensburg classification:UT 4700, RB 10357, AR 141200, ST 630
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Extern / Extern
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoUrheberrechtsschutz
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.