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Zusammenfassung

Der technologische Fortschritt erlaubt es, zunehmend komplexe Vorhersagemodelle
auf Basis immer groflerer Datensdtze zu produzieren. Fiir das Risikomanagement
von Naturgefahren sind eine Vielzahl von Modellen als Entscheidungsgrundlage
notwendig, z.B. in der Auswertung von Beobachtungsdaten, fiir die Vorhersage von
Gefahrenszenarien, oder zur statistischen Abschdtzung der zu erwartenden Schaden. Es
stellt sich also die Frage, inwiefern moderne Modellierungsansatze wie das maschinelle
Lernen oder Data-Mining in diesem Themenbereich sinnvoll eingesetzt werden kénnen.
Zusétzlich ist im Hinblick auf die Datenverfiigbarkeit und -zugéanglichkeit ein Trend zur
Offnung (open data) zu beobachten. Thema dieser Arbeit ist daher, die Moglichkeiten
und Grenzen des maschinellen Lernens und frei verfligbarer Geodaten auf dem
Gebiet der Hochwasserrisikomodellierung im weiteren Sinne zu untersuchen. Da dieses
tibergeordnete Thema sehr breit ist, werden einzelne relevante Aspekte herausgearbeitet
und detailliert betrachtet.

Eine prominente Datenquelle im Bereich Hochwasser ist die satellitenbasierte
Kartierung von Uberflutungsflichen, die z.B. iiber den Copernicus Service der
Europédischen Union frei zur Verfiigung gestellt werden. Grofie Hoffnungen werden
in der wissenschaftlichen Literatur in diese Produkte gesetzt, sowohl fiir die
akute Unterstiitzung der Einsatzkrdfte im Katastrophenfall, als auch in der
Modellierung mittels hydrodynamischer Modelle oder zur Schadensabschédtzung.
Daher wurde ein Fokus in dieser Arbeit auf die Untersuchung dieser Flutmasken
gelegt. Aus der Beobachtung, dass die Qualitit dieser Produkte in bewaldeten
und urbanen Gebieten unzureichend ist, wurde ein Verfahren zur nachtrdglichen
Verbesserung mittels maschinellem Lernen entwickelt. Das Verfahren basiert auf einem
Klassifikationsalgorithmus der nur Trainingsdaten von einer vorherzusagenden Klasse
bendtigt, im konkreten Fall also Daten von Uberflutungsflachen, nicht jedoch von der
negativen Klasse (trockene Gebiete). Die Anwendung fiir Hurricane Harvey in Houston
zeigt grofies Potenzial der Methode, abhédngig von der Qualitdt der urspriinglichen
Flutmaske.

AnschliefSfend wird anhand einer prozessbasierten Modellkette untersucht, welchen
Einfluss implementierte physikalische Prozessdetails auf das vorhergesagte statistische
Risiko haben. Es wird anschaulich gezeigt, was eine Risikostudie basierend auf
etablierten Modellen leisten kann. Solche Modellketten sind allerdings bereits fiir
Flusshochwasser sehr komplex, und fiir zusammengesetzte oder kaskadierende
Ereignisse mit Starkregen, Sturzfluten, und weiteren Prozessen, kaum vorhanden. Im
vierten Kapitel dieser Arbeit wird daher getestet, ob maschinelles Lernen auf Basis
von vollstindigen Schadensdaten einen direkteren Weg zur Schadensmodellierung
ermoglicht, der die explizite Konzeption einer solchen Modellkette umgeht. Dazu wird
ein staatlich erhobener Datensatz der geschadigten Gebdude wahrend des schweren
El Nifio Ereignisses 2017 in Peru verwendet. In diesem Kontext werden auch die
Moglichkeiten des Data-Mining zur Extraktion von Prozessverstindnis ausgelotet. Es
kann gezeigt werden, dass diverse frei verfiigbare Geodaten niitzliche Informationen fiir



die Gefahren- und Schadensmodellierung von komplexen Flutereignissen liefern, z.B.
satellitenbasierte Regenmessungen, topographische und hydrographische Information,
kartierte Siedlungsflichen, sowie Indikatoren aus Spektraldaten. Zudem zeigen sich
Erkenntnisse zu den Schadigungsprozessen, die im Wesentlichen mit den vorherigen
Erwartungen in Einklang stehen. Die maximale Regenintensitidt wirkt beispielsweise in
Stadten und steilen Schluchten starker schddigend, wahrend die Niederschlagssumme
in tiefliegenden Flussgebieten und bewaldeten Regionen als aussagekraftiger befunden
wurde. Liandliche Gebiete in Peru weisen in der prdsentierten Studie eine hohere
Vulnerabilitit als die Stadtgebiete auf. Jedoch werden auch die grundsétzlichen Grenzen
der Methodik und die Abhéngigkeit von spezifischen Datensidtzen and Algorithmen
offenkundig.

In der {iibergreifenden Diskussion werden schliefllich die verschiedenen Methoden —
prozessbasierte Modellierung, pradiktives maschinelles Lernen, und Data-Mining — mit
Blick auf die Gesamtfragestellungen evaluiert. Im Bereich der Gefahrenbeobachtung
scheint eine Fokussierung auf neue Algorithmen sinnvoll. Im Bereich der
Gefahrenmodellierung, insbesondere fiir Flusshochwasser, wird eher die Verbesserung
von physikalischen Modellen, oder die Integration von prozessbasierten und
statistischen Verfahren angeraten. In der Schadensmodellierung fehlen nach wie vor die
grofien reprasentativen Datensédtze, die fiir eine breite Anwendung von maschinellem
Lernen Voraussetzung ist. Daher ist die Verbesserung der Datengrundlage im Bereich
der Schdden derzeit als wichtiger einzustufen als die Auswahl der Algorithmen.
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Summary

Technological progress allows for producing ever more complex predictive models
on the basis of increasingly big datasets. For risk management of natural hazards, a
multitude of models is needed as basis for decision-making, e.g. in the evaluation of
observational data, for the prediction of hazard scenarios, or for statistical estimates of
expected damage. The question arises, how modern modelling approaches like machine
learning or data-mining can be meaningfully deployed in this thematic field. In addition,
with respect to data availability and accessibility, the trend is towards open data. Topic of
this thesis is therefore to investigate the possibilities and limitations of machine learning
and open geospatial data in the field of flood risk modelling in the broad sense. As
this overarching topic is broad in scope, individual relevant aspects are identified and
inspected in detail.

A prominent data source in the flood context is satellite-based mapping of inundated
areas, for example made openly available by the Copernicus service of the European
Union. Great expectations are directed towards these products in scientific literature,
both for acute support of relief forces during emergency response action, and for
modelling via hydrodynamic models or for damage estimation. Therefore, a focus of
this work was set on evaluating these flood masks. From the observation that the
quality of these products is insufficient in forested and built-up areas, a procedure for
subsequent improvement via machine learning was developed. This procedure is based
on a classification algorithm that only requires training data from a particular class to be
predicted, in this specific case data of flooded areas, but not of the negative class (dry
areas). The application for hurricane Harvey in Houston shows the high potential of this
method, which depends on the quality of the initial flood mask.

Next, it is investigated how much the predicted statistical risk from a process-based
model chain is dependent on implemented physical process details. Thereby it is
demonstrated what a risk study based on established models can deliver. Even for
fluvial flooding, such model chains are already quite complex, though, and are hardly
available for compound or cascading events comprising torrential rainfall, flash floods,
and other processes. In the fourth chapter of this thesis it is therefore tested whether
machine learning based on comprehensive damage data can offer a more direct path
towards damage modelling, that avoids explicit conception of such a model chain.
For that purpose, a state-collected dataset of damaged buildings from the severe El
Nifio event 2017 in Peru is used. In this context, the possibilities of data-mining for
extracting process knowledge are explored as well. It can be shown that various openly
available geodata sources contain useful information for flood hazard and damage
modelling for complex events, e.g. satellite-based rainfall measurements, topographic
and hydrographic information, mapped settlement areas, as well as indicators from
spectral data. Further, insights on damaging processes are discovered, which mainly
are in line with prior expectations. The maximum intensity of rainfall, for example, acts
stronger in cities and steep canyons, while the sum of rain was found more informative
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in low-lying river catchments and forested areas. Rural areas of Peru exhibited higher
vulnerability in the presented study compared to urban areas. However, the general
limitations of the methods and the dependence on specific datasets and algorithms also
become obvious.

In the overarching discussion, the different methods - process-based modelling,
predictive machine learning, and data-mining — are evaluated with respect to the
overall research questions. In the case of hazard observation it seems that a focus on
novel algorithms makes sense for future research. In the subtopic of hazard modelling,
especially for river floods, the improvement of physical models and the integration of
process-based and statistical procedures is suggested. For damage modelling the large
and representative datasets necessary for the broad application of machine learning are
still lacking. Therefore, the improvement of the data basis in the field of damage is
currently regarded as more important than the selection of algorithms.
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Chapter 1

Motivation & Objectives

1.1 The scope of flood risk modelling

Taming nature and using its resources for a safe and prosperous life has been the
pursuit of mankind over the course of centuries. Natural hazards counteract these
ambitions by threatening life and property. Risk management attempts to minimize their
consequences. Providing actionable insights that allow for informed decision- making is
the task of risk modelling.

Floods are the hazard affecting the most people globally and responsible for the gross
of economic damage (Visser et al., 2014). While fatalities from floods have declined over
the last decades (Merz et al., 2021; Luo et al., 2015), recent events made clear that still
today hundreds of people can die of flooding, even in the most economically developed
countries. Examples include the two major catastrophes that are investigated as case
studies in this thesis: the coastal El Nifio 2017 in Peru (Son et al., 2019), and hurricane
Harvey in the USA the same year (HCFCD, 2018), as well as the 2021 flood event in
Germany (Schéfer et al., 2021).

Risk is a quantity of potential negative consequences with a probability assigned - a
definition that has its roots in the work of the early Chicago school economist Frank
Knight, who separated calculable risk from uncertainty (Knight, 1921; Meyer et al., 2008).
In the natural hazard context, the conceptual risk equation is typically denoted as a
product of hazard intensity, exposure and vulnerability (Kron, 2005; Lavell et al., 2012),
and all three components may change over time.

The globally observed increase in damage from all natural hazards over the last
decades (CRED and Guha-Sapir, 2020; MunichRe, 2019) has been primarily attributed
to changes in exposure, i.e. population growth, economic development and construction
in hazardous areas (Merz et al.,, 2021; Bouwer, 2011; Visser et al., 2014). Hydro-
meteorological hazards, such as floods, are additionally intensified by climate change, as
a warmer atmosphere generally speaking can store and release more water and energy
(Fischer and Knutti, 2016; Myhre et al., 2018; Zeder and Fischer, 2020). Therefore more
damaging pluvial events are expected (Kaspersen et al., 2017; Bronstert et al., 2020).
Although more precipitation alone does not necessarily translate to more river floods
(Sharma et al., 2018), there are clear regional trends (Bloschl et al., 2019; Hirabayashi
et al., 2021; Tabari, 2020). Also a shift in seasonality may play a role (Brunner et al., 2020;
Rottler et al., 2021), as well as variations in the large-scale circulation patterns such as
the Asian Monsoon or the El Nifio Southern Oscillation (Loo et al., 2015; Cai et al., 2015).
Whether a climate signal is already visible in observed flood damage statistics has been
debated (Bouwer, 2011; Nicholls, 2011; Visser et al., 2014), but a recent study suggests
that climate-induced trends are detectable in damage time series when disaggregating
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regions according to hydrological criteria rather than by socio-economic similarity
(Sauer et al., 2021). The Paris agreement of 2015 announced the political will to limit
global warming to “well below 2°C above pre-industrial levels and pursuing efforts to
limit the temperature increase to 1.5°C” (https://unfccc.int/sites/default/files/
english_paris_agreement.pdf, accessed 06.09.2021). However, with the 1.5°C target
almost out of reach (Jewell and Cherp, 2019; Warszawski et al., 2021), adaptation
becomes more and more relevant. Through the lens of the risk equation, climate
change mitigation (i.e. reduction of climate forcings like greenhouse gasses) translates
to reducing the hazard component. Climate adaptation primarily attempts to adjust
the other two components (Lavell et al., 2012), namely exposure and vulnerability, i.e.
the amount of loss or damage suffered from the same hazard intensity. Vulnerability
is expected to decrease globally, although with regional differences (Jongman et al,,
2015; Formetta and Feyen, 2019; Sauer et al., 2021). Further reduction in exposure and
vulnerability is envisaged to be achieved according to the concept of “building back
better” (Clinton, 2006; Fernandez and Ahmed, 2019), risk-informed spatial planning, as
well as improvements in the early warning and risk communication, which is expected
to enhance private precaution (Sairam et al., 2019; Kreibich et al., 2021) — and as a last
resort: risk transfer by insurance solutions. Of course some adaptation measures may
also alter the local hazard characteristics, for example blue-green infrastructure (Hamel
and Tan, 2021), sponge cities (Zevenbergen et al., 2018) and obviously dike construction.

The Sendai framework outlines current priorities for natural hazard risk reduc-
tion in the context of the United Nations Sustainable Development Goals (SDG)
(https://wuw.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf, ac-
cessed 06.09.2021). Natural hazards often act as setback for progress on the SDGs, either
directly by increased mortality, spread of diseases, and destruction of relevant infrastruc-
ture, or indirectly. Even “mere” economic loss may lead to social, cultural, health and
environmental damage, and on the personal level also cause psychological issues (e.g.
Bubeck et al., 2017; Laudan et al., 2020). Natural hazard risk is therefore closely related
to questions of humanitarian aid and displacement (Kakinuma et al., 2020), compensa-
tions (Calliari et al., 2020), social injustice (Penning-Rowsell et al., 2016), and systemic
criticality (Kruse et al., 2021). Scientists and project initiatives are explicitly addressed in
the Sendai final document to develop new models to assess hazard and risk and help
strengthening local technical capacity. The use of geospatial information technology is
encouraged, for example to share maps with potentially affected population and stake-
holders. Improvement in risk modelling is thus identified as an important building block
of risk management and adaptation.

Mathematical models are needed for various tasks along the risk management cycle, i.e.
during the phases of monitoring, emergency response, recovery and reconstruction, risk
analysis, and risk reduction (e.g. Kreibich et al., 2014; Spekkers et al., 2017). Arguably,
all models developed and applied in this context may therefore be considered part of
the broader field of flood risk modelling. In the narrow sense, the term risk modelling is
often used to refer specifically to the prediction of negative consequences (e.g. number
of affected people, damage to buildings or goods, business interruption time) in relation
to the event return period (Merz et al., 2010). Especially in the insurance sector and
related fields, risk is strictly defined as the expected value of monetary loss (or insurance
claims) per time span of interest, typically a year (Olsen et al., 2015; Merz et al., 2010).
Risk models in the latter sense are not only used for adjusting insurance premiums, but
also for conducting cost-benefit analyses of adaptation measures (Hall et al., 2012) or
to judge the regional distribution of governmental investments in risk reduction efforts
(e.g. Sairam et al., 2021).
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1.2 State of the art

Hazard assessment is the first step of any risk assessment. In the case of real flood events,
hazard information can be taken from observations such as satellite or aerial footage, or
even field work, potentially recreated in a hydrodynamic model (e.g. Jiménez-Jiménez
et al., 2020; Wing et al., 2019). For statistical risk simulations, a catalogue of realistic
scenarios needs to be generated, which can be achieved by coupling a precipitation
time series, e.g. from a stochastic weather generator, to a hydrological and subsequent
hydrodynamic model (e.g. Falter et al., 2015; Trigg et al., 2016). Although such model
chains are by now even used on the global scale (Ward et al., 2013), the implemented
process description details are limited in tradeoff for computational time demand,
and the results consequently associated with large uncertainties (Trigg et al., 2016;
Vorogushyn et al., 2018). The effect of model complexity on the resulting risk estimates is
rarely quantified (Apel et al., 2008). Another form of hazard assessment can be found in
literature under the term susceptibility mapping (Chapi et al., 2017; Tehrany et al., 2018;
Yousefi et al., 2020; Madhuri et al., 2021; Islam et al., 2021), which consists of predicting
the potential spatial extent of flooding, often in categorical classes of probability, by a
statistical model trained on observed flood locations and geospatial information layers
such as topography, hydrography, lithology and vegetation.

When the consequence of interest is building damage, exposure data is traditionally
taken either from land use maps, or in small scale applications from individually
mapped building types (de Moel et al., 2015). For damage estimation, several schools
of thought are generally encountered: On the one hand the theoretical approach of
assigning loss functions to types of buildings, either by experts in the field (e.g. Penning-
Rowsell and Chatterton, 1977) or from laboratory measurements and analytical models
of structural integrity of buildings under force of water (Mazzorana et al., 2014; Jalayer
et al., 2016), which could also be termed the construction engineer approach. On the
other hand are the empiricists, collecting damage data from real hazard events, and
applying regression models (e.g. Thieken et al., 2008; Kreibich et al., 2010; Ettinger et al.,
2016). Most established damage models are simple in design (Gerl et al.,, 2016) and
reliability has been questioned in literature (Bubeck et al., 2011; Molinari et al., 2020),
but probabilistic methods are now emerging to at least communicate the associated
uncertainty (Schroter et al., 2014; Rozer et al., 2019; Schoppa et al., 2020). A completely
different approach is indicator-based risk mapping in a geo information system (GIS)
(Greiving et al., 2006; Fedeski and Gwilliam, 2007; Meyer et al., 2008; Miiller et al.,
2011; Aksha et al., 2020). While the cited approaches have the advantage of being able
to account for multiple dimensions of risk, in some cases even multiple hazard types,
they suffer from a severe drawback: these studies rely on expert-assigned weights in
calculation (e.g. Delphi method, analytical hierarchy process).

Among all flood types, there has arguably been a lot of progress on the subtopic of
fluvial floods, as they occur in central Europe, northern America, and eastern Asia —
places where most internationally visible research on flood damage functions originates
from (Gerl et al., 2016). These floods, although potentially disastrous, are characterized
by relatively slow-rising water levels over a large catchment, where driving factors are
either long-lasting precipitation over the same area, repeated cyclone tracks e.g. due
to atmospheric blocking, intense snow melt or ice-jam events (e.g. Merz et al., 2021).
Such events can be observed as they materialize, and consequently forecasted with at
least several hours up to a few days lead time, allowing for emergency actions and
evacuation orders to be issued (Kreibich et al., 2017). The potentially affected areas for
a worst-case scenario can be coarsely estimated from a digital elevation model and/or
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hydrodynamic modelling (Magnini et al., 2021; Mudashiru et al., 2021), therefore it is
possible to inform inhabitants of risk-prone areas to create awareness and hopefully
also preparedness (Osberghaus and Hinrichs, 2020). More difficult for modelling and
management are the topics of urban pluvial flooding, flash flooding, and compound
events. In the first case, extreme local convective precipitation — which is difficult to
predict by large-scale models —leads to surface runoff and ponding water either directly
on sealed ground or due to infiltration excess and overflowing sewers (Rozer et al., 2021).
The second type of flood is similar in the making, but additionally requires water to be
channeled in steep terrain, where a normally quiet stream rapidly turns into a raging
current, picking up large objects such as boulders or cars, and wreaking havoc within a
small town or suburb (e.g. Bronstert et al., 2018; Thouret et al., 2014). Compound events
consist of multiple event types that occur in a cascade or simultaneously (Zscheischler
et al., 2020). They often come as a surprise and therefore require utmost attention of risk
managers (Merz et al., 2015). A merged risk assessment for fluvial and pluvial or other
compound event types is still an open challenge (Couasnon et al., 2020; Thieken et al.,
2021; Tilloy et al., 2019). It has been speculated that the sheer complexity of the task of
multi-risk modelling has been a major obstacle preventing scientists and practitioners
from developing models for such scenarios (Kappes et al., 2012). A project initiative that
did attempt to develop such a model chain is the RIESGOS project (Pittore et al., 2020),
(www.riesgos.de/), in which the author of this dissertation was included. The multi-
risk model chain developed during RIESGOS is designed in a decentralized manner, so
that experts of each discipline can develop and maintain their own model component.
Instead of creating risk curves from a catalogue of events with explicit return periods,
which are anyway difficult to estimate for rare multi-hazards, the project followed a
scenario approach. The detailed scenarios are suited for exploration during exercises
with potentially affected stakeholders or risk managers, and can serve as basis for
communication and identification of critical elements, as shown by (Gomez-Zapata et al.,
2021). However, such compound event scenarios remain hypothetical and associated
with large uncertainties.

1.3 The era of open data and machine learning

We are currently witnessing rapid advances in the availability, accessibility and
standardization of data and research software. First of all, vast streams of data about
our planet are collected every day by sensors both on the ground and in space (Hart
and Martinez, 2006; Laur and Liebig, 2010; Li et al., 2015). With recent initiatives such as
the Copernicus program of the European Union (Aschbacher and Milagro-Pérez, 2012),
that provides data free-of-charge, and many new commercial providers (Pabian, 2015),
satellite imagery both in the optical and microwave spectrum is becoming available on
a daily basis. Derived products from this kind of data include, among others, digital
elevation models, land cover maps, soil moisture content, biomass estimates, flood
masks and post-disaster damage assessments (Rizzoli et al., 2017; Wagner et al., 2013;
Bégué et al.,, 2020; Taubenbock et al., 2011). Further, there are efforts to compile and
interpolate existing measurements such as soil profiles (Hengl et al., 2017), and crowd-
sourced mapping initiatives like OpenStreetMap (OpenStreetMap contributors, 2017).

The open data movement, visible at least since the 2007 gathering of tech visionaries
at Sebastopol (OpenDataWorkingGroup, 2007), calls for free access to governmental
and research data to support transparency and collaboration (e.g. Geiger and Lucke,
2012; Schrock and Shaffer, 2017). Geo- and environmental sciences have been at
the core of the open data initiative, due to the trans-border nature of the field
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that does not stick to political boundaries (e.g. Yu and Robinson, 2012; Turner
et al., 2015). In the context of global change studies it is self-explanatory that data
collected from different locations, and consequently by different institutions, needs
to be merged to obtain a complete picture. A call for open data with standardized
format is a logical consequence. Also, governmental data is often useful in the
environmental science context (Roche et al., 2020), and more specifically in the flood risk
modelling domain, for example cadastral information or geospatial maps of protected
habitats, polder areas or dike lines. Since 2016, the G20 leaders explicitly support
the clearly outlined FAIR principles: Findability, Accessibility, Interoperability, and
Reuse (https://www.go-fair.org/fair-principles/, accessed 03.01.2022) (https:
//ec.europa.eu/commission/presscorner/detail/en/STATEMENT_16_2967, accessed
03.01.2022).

Simultaneously, the open access movement demands free-of-charge scientific publica-
tions (https://www.budapestopenaccessinitiative.org/read, accessed 30.09.2021).
Specific journals are emerging to foster the sharing and citing of research data (e.g.
Data, Scientific Data, Earth System Science Data). Hydrologically relevant data include
an inventory of dams in Germany (Speckhann et al., 2021), a database on damaging
floods (Paprotny et al., 2018), or the geospatial version of the emergency database GDIS
(Rosvold and Buhaug, 2021). Also, mandatory public access to programming code de-
veloped in tax-funded projects has already been requested (https://publiccode.eu/,
accessed 03.01.2022). Scientific code development for reproducible analyses is gradually
professionalized by drawing upon established workflows from the tech industry, such
as continuous integration on a version control software (Perez-Riverol et al., 2016).

As of today, the open geospatial consortium (OGC) issues standards and protocols
for a variety of geodata formats, such as GeoTIFF (http://www.opengis.net/doc/IS/
GeoTIFF/1.1, accessed 03.01.2022), and for software components like web processing
services (WPS). Such conventions ease the integration of several components to a more
complex modular processing architecture. An example with practical use in the natural
hazard risk modelling domain is the previously mentioned RIESGOS model chain.
Particularly for remote sensing imagery, a recent trend for data providers is to deliver
Analysis Ready Data (Dwyer et al., 2018). This means that common preprocessing steps,
some of which are computationally intensive or difficult to implement, are conducted by
the data provider. The users can then skip these steps and directly start with data analysis
and interpretation. Spatiotemporal data can further be organized in data cubes (Giuliani
etal., 2019), such as https://wuw.opendatacube.org, accessed 03.01.2022). This concept
is also emerging beyond remote sensing imagery, for example the Earth System Data Lab
(Mahecha et al., 2020) used to study multivariate dynamics of the earth system. The most
famous example up to now is Google Earth Engine (Gorelick et al., 2017), which comes
with direct access to high performance computing power on Google servers.

Extracting information from these vast new data sources requires adequate analytical
methods. Such have been developed by the statistical and computer science
communities under the term machine learning (ML). A key element of these methods
is that they discover patterns automatically and do not require manual inspection of
endless variable combinations (e.g. Murphy, 2012). Algorithms can be grouped into
supervised, unsupervised, and semi-supervised methods (e.g. Murphy, 2012; Géron,
2017). Supervised methods require labeled training data. Unsupervised methods are
mainly clustering or dimensionality reduction, that operate without any labels. Semi-
supervised refers to methods that use partially labeled examples, and a large pool of
unlabeled data. Many of these methods are not entirely novel, e.g. the roots of Artificial


https://www.go-fair.org/fair-principles/
https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_16_2967
https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_16_2967
https://www.budapestopenaccessinitiative.org/read
https://publiccode.eu/
http://www.opengis.net/doc/IS/GeoTIFF/1.1
http://www.opengis.net/doc/IS/GeoTIFF/1.1
https://www.opendatacube.org

6 Chapter 1. Motivation & Objectives

Neural Networks date back to the 1950s (Rosenblatt, 1958) and non-linear Support Vector
Machines were invented in the 1990s (Cortes and Vapnik, 1995).

As Leo Breiman, inventor of the famous Random Forest algorithm (Breiman, 2001a),
pointed out, there are two different cultures of statistical analysis: the more traditional
school of statisticians who, given a classification or regression problem, aim at modelling
the “data generating process”; and the computer science inspired algorithmic modellers,
who try to solve the original problem directly with a focus on predictive accuracy in
trade for model interpretability (Breiman, 2001b). This is more than a simple difference
in methods, it is indeed a different philosophy. From the practical point of view, a
traditional statistical model requires the user to manually define an equation including
the interaction effects to be considered, and to make assumptions about residual
distributions. This is also true for Bayesian inference models (e.g. Kruschke, 2015).
The workflow typically includes hypothesis testing with accepting or rejecting certain
elements. Algorithms used in ML rather rely on internal regularization procedures
to handle variable selection, multicollinearity, non-linearity, and interactions in the
explanatory features that may prove disturbing in a traditional regression (e.g. Murphy,
2012; Dormann et al., 2012). Thereby, ML algorithms free the user of dealing with these
issues in detail, allowing for faster workflows when data is big in terms of sample size or
number of variables. However, this is only true as long as predictive accuracy is indeed
the only measure of interest. The exploratory counterpart of machine learning is termed
data-mining (e.g. Géron, 2017). Some algorithms can be used for both tasks, therefore
the separation of terms is not always clear. Besides using unsupervised methods to
find structure in unknown data, data-mining can also mean to inspect the structure of
predictive models, in search for process understanding (Friedman, 2001; Strobl et al.,
2008; Debeer and Strobl, 2020; Zhao and Hastie, 2019).

1.4 Data science in the field of flood risk modelling

Also the geoscience and natural hazard risk domains are being transformed by these
methods, however the field does not yet fully embrace the new possibilities (Blair et al.,
2019; Reichstein et al., 2019; Wagenaar et al., 2020). Particularly in predictive flood
impact modelling, Wagenaar et al. (2020) identify a “potential for significant change”
by ML, which they claim to be largely untapped due to economically constrained data
collection and a conservative mentality. Also Mack (2017) stretches the point that the
skillset required to implement these methods, which usually come in a programming
environment first, and the theoretical complexity of the algorithms, are obstacles for
people trained as geoscientists or similar. In the broader field of flood risk modelling,
the subdomain most advanced with respect to adopting ML is probably satellite image
classification, e.g. for rapid flood mapping (Li, Martinis and Wieland, 2019; Bonafilia
et al., 2020) or for exposure analysis (Geifs et al., 2017; Wieland and Pittore, 2016). In
this context it is straightforward to apply these methods, as large amounts of data are
collected in a systematic way by high-precision measurement instruments, and the target
label is relatively clear.

In the prediction of flood hazard, process-based physical models are still state-of-the-art
for a good reason (Wagenaar et al., 2020). Such type of models make sense when the
process in question is well understood, which is the case for fluid dynamics (Stokes,
1880; Brutsaert, 2014). Here the questions are rather how much physical complexity is
necessary (Neal et al., 2011), and how remotely sensed flood extents can be used in an
assimilation procedure (Dasgupta et al., 2021). The picture is less clear for hydrological
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models that make assumptions about the subsurface, for which comprehensive data
is typically not available, and for which long short-term memory (LSTM) networks
were proposed as an alternative (Clark et al., 2017; Kratzert et al., 2018). Also the field
of susceptibility mapping uses geospatial data and machine learning to predict flood
hazard, with some authors explicitly stating that hydrological models might be too
simple for complex catchment processes (Chapi et al., 2017; Tehrany et al., 2018).

Most obstacles are encountered in the subdomain of damage modelling. Damage models
based on ML algorithms have been designed in recent years, but usually trained on a
very limited empirical dataset from local flood events (Merz et al., 2013; Laudan et al.,
2017; Wagenaar et al., 2017). In addition to the low sample size, the data can contain
further biases depending on the data collection method (Flanagin and Metzger, 2008;
Stern et al., 2014). Even the influencing variables of damage, besides water depth, are
not entirely clear (e.g. Kreibich et al., 2009; Cerri et al., 2021), although some data-mining
studies have been conducted (Schroter et al., 2014; Sieg et al., 2017; Rozer et al., 2019).

1.5 Objectives and structure

Several topics have been identified in the introduction that require investigation: The
potential of open geospatial data (OGD), and in particular remote sensing products,
in the flood risk context is to be tested. With regard to methods, ML workflows in
comparison to process-based models for prediction and process understanding seem
worth exploring. In terms of application cases, risk estimation methods for compound
events are urgently needed. In consideration of these topics, the following specific
research questions to be answered in this thesis are defined:

1. Which open geospatial datasets contain useful information for flood hazard and
risk modelling?

2. What is the quality of current satellite-based flood masks and how can they be
improved?

3. How much are risk estimates by state-of-the-art process-based flood model chains
influenced by process description details such as hydrodynamic interactions?

4. Can ML and OGD be used to construct damage models for compound events that
are difficult to describe by explicit process-based model chains?

5. To what extent can process understanding be derived from either of these
methods?

All in all, this thesis makes a novel contribution to the advancement of the field of flood
risk modelling in the broad sense, by sketching new ways of how ML and OGD can
be utilized. The identified scientific challenge is not only which algorithm to apply, but
rather to develop workflows that enable the meaningful application of algorithms for
specific unsolved problems. Further, the thesis presents improvements in the individual
components of hazard observation, hazard modelling, and damage modelling. The three
following chapters each present an aspect of flood risk modelling at its current limit
and push the respective boundaries. The research presented has a methodological axis
and a thematic axis (Fig. 1.1). Methods range from process-based to predictive machine
learning and finally data-mining for process understanding. Thematically, the thesis
evolves from hazard observations, over single hazard comprehensive risk modelling,
to compound event damage modelling.
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Specifically, Chapter 2 assesses the limitations of currently available satellite-based flood
masks and demonstrates how these products can be turned into labeled training areas for
subsequent modelling, with the aim of estimating the true flood extent in vegetated and
urban areas. Such an improvement is needed for assimilation in hydrodynamic models
and for rapid impact assessments. The study also shows that merging the domains of
remote sensing, where traditionally satellite sensor data is analyzed, with indicators
used in susceptibility mapping, can be fruitful.

In Chapter 3 a state-of-the-art process-based model chain for fluvial flood risk
assessment is presented, to investigate the effect of process description details,
namely hydrodynamic interactions, on economic risk estimates. Methodically, the study
contrasts the ML approaches and demonstrates how a risk estimation could look like
when processes are more or less known. However, it also becomes clear that currently
implemented process description is not sufficient.

Chapter 4 then moves forward to the domain of damage modelling for a compound
El Nifio flood event, for which methods as in Chapter 3 do not yet exist, using
similar methods as in Chapter 2. Classification algorithms are used here to directly
model the resulting total structural building damage. By this approach, it is possible
to leapfrog over the detailed hazard assessment, and directly derive empirical spatial
risk estimates for compound events. The study is based on a comprehensive empirical
survey conducted by state authorities, and therefore avoids sample bias. The potential
and limitations of fully empirical methods for mapping risk and deriving process
understanding are investigated.

The connections between Chapters 2 and 4 are on the methodical level. In both studies,
machine learning methods are used in a detailed manner, multiple algorithms are
compared and geomorphic indices and other typical and novel indicators from the
geoscience domain are used as predictors. In both contexts, the usage of such indicators
is not entirely uncommon, but the way of application is novel: In Chapter 2, the geo-
features are used in a second step, i.e. not in combination with the satellite sensor data
but afterwards. In Chapter 4, the features are used to directly predict damage probability,
rather than hazard. Thereby they act as complex intensity metrics. Chapters 2 and
connect on the level of data assimilation and model calibration, as well as on the question
of how much physical complexity is necessary to describe inundation. Chapters 3 and
are further connected via the thematic question of process-based model chains versus
ML approaches for risk modelling. Finally, the individual findings are summarized
and discussed in the light of the stated research questions in Chapter 5, ending with
suggestions for further research and the overall conclusion.
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Chapter 2

Extrapolating satellite-based flood
masks by one-class classification —
A test case in Houston

2.1 Abstract

Flood masks are among the most common remote sensing products, used for rapid crisis
information and as input for hydraulic and impact models. Despite the high relevance
of such products, vegetated and urban areas are still unreliably mapped, sometimes
even excluded from the analysis. The information content of synthetic aperture radar
(SAR) images is limited in these areas due to the side-looking imaging geometry
of radar sensors and complex interactions of the microwave signal with trees and
urban structures. Classification from SAR data can only be optimized to reduce false
positives, but cannot avoid false negatives in areas that are essentially unobservable to
the sensor, e.g. due to radar shadows, layover, speckle and other effects. We therefore
propose to treat satellite-based flood masks as intermediate products with true positives,
and unlabeled cells instead of negatives. This corresponds to the input of a positive-
unlabeled (PU) learning one-class classifier (OCC). Assuming that flood extent is at least
partially explainable by topography, we present a novel procedure to estimate the true
extent of the flood, given the initial mask, by using the satellite-based products as input
to a PU OCC algorithm learned on topographic features. Additional rainfall data and
distance to buildings had only minor effect on the models in our experiments. All three
of the tested initial flood masks were considerably improved by the presented procedure,
with obtainable increases in the overall « score ranging from 0.2 for a high quality initial
mask to 0.7 in the best case for a standard emergency response product. An assessment
of k for vegetated and urban areas separately shows that the performance in urban areas
is still better when learning from a high quality initial mask.

2.2 Introduction

Satellite-based flood mapping is a central topic in applied remote sensing, due to the
high relevance of accurate event maps in all phases of the disaster risk management
cycle. Besides the use during emergency response, the observed flood extent is often
necessary for post-event analysis, including modelling studies. An emerging field is also
the assimilation of flood extents in near-real-time into hydrodynamic models (Hostache
et al., 2018). The term flood mask refers to a binary geospatial data layer of flood water
extent, where the permanent water bodies are excluded. Most products are currently
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based on SAR sensors, which can operate day and night, independent of cloud cover.
As the temporal coverage and free-of-charge availability of satellite imagery steadily
increases, flood masks of varying quality and file format are produced, e.g. by the
Copernicus Emergency Management Service of the European Commission (EMSR).
However, there are still obvious limitations to these currently available products, which
hamper their usage: (1) Urban flooding is usually underdetected, because built-up areas
are difficult to observe from space, due to the occurrence of radar shadows, layover
effects, and speckle (e.g. Mason et al., 2010; Pulvirenti et al., 2016). This is for example
problematic for damage estimations, which are strongly influenced by the number
of exposed buildings within the flood mask (Sieg et al., 2019). (2) Flooding below
the vegetation canopy, although theoretically detectable on longer wavelength sensors
depending on the density of the canopy (Henderson and Lewis, 2008; Plank et al.,
2017), is typically omitted as well, even along river courses, which obscures the true
land-water boundary. Algorithms for deriving the water depth from a mapped extent
are available, but hinge on the precision of that land-water boundary (Zwenzner and
Voigt, 2008; Cian et al., 2018; Cohen et al., 2017; Matgen et al., 2016) as well as on
the quality of the elevation data (Schumann et al., 2008). Inundation depth is often
required in applications, for example flood damage models usually rely on it as main
explanatory feature (exceptions being crop damage models, which may use duration
and timing). Therefore, a step towards more reliable flood extent is also a step towards
the applicability in hydrodynamic and flood damage models. (3) The often undescribed
uncertainty of satellite-based flood masks leads to further problems in applications, e.g.
when assessing the performance of a hydraulic model (Stephens et al., 2012). Although
some scientific studies provide uncertainty estimates (e.g. Giustarini et al., 2015; Martinis
and Rieke, 2015), this is not yet operational standard, e.g. for the EMSR products.

A staggering amount of different methods has already been explored for water
delineation from SAR images. Examples include automatic grey level thresholding
(Martinis et al., 2009), active contour models (Horritt et al., 2001), fuzzy scoring
(Pulvirenti et al., 2011; Twele et al., 2016), time series analysis (Schlaffer et al., 2015),
Bayesian networks (Li, Martinis, Wieland, Schlaffer and Natsuaki, 2019) and, recently,
convolutional neural networks (Li, Martinis and Wieland, 2019; Bonafilia et al., 2020).
Nevertheless, the information content of single-date, single-polarization SAR amplitude
data is limited in vegetated and especially in urban environments, which are the most
interesting areas with respect to impact estimations. Acknowledging these limitations,
the remote sensing community moves towards integration of additional information
layers, such as interferometric coherence (Chini et al., 2019; Pulvirenti et al., 2016; Li,
Martinis, Wieland, Schlaffer and Natsuaki, 2019), optical data (Wieland and Martinis,
2019), terrain elevation (Mason et al., 2010, 2012; Huang et al., 2017) and even social
media content (Scotti et al., 2020). The cited approaches incorporating topographic
information use this mainly to exclude false positives. Most notably for this study,
a typical postprocessing step is to overlay the classified flood extent with so-called
exclusion layers, to reduce false positives from material that exhibits low backscatter,
like dry sand (Martinis, 2018). With this in mind, we conclude that flood masks from SAR
data can be optimized to reduce false positives, by sophisticated classification methods
and exclusion layers, but cannot avoid false negatives in areas which are unobservable
for the sensor, e.g. due to the abovementioned effects.

The hydrological and geomorphological communities have developed advanced GIS
approaches to delineate flood-prone areas without having to resort to numerical
hydraulic models (Samela et al., 2017; Chapi et al., 2017; Tehrany et al., 2018), also with
a focus on urban areas (Kelleher and McPhillips, 2019; Mukherjee and Singh, 2019).
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While numerical models still have many advantages, and benefit from the increase of
computation power, they require bathymetry and discharge or water level as boundary
condition, which is not always available. Examples of indicators that have successfully
been used in the context of flood susceptibility mapping, e.g. in the cited studies
above, are the Height Above Nearest Drainage (HAND) index (Renn¢ et al., 2008)
and the Topographic Wetness Indicator (TWI) (Quinn et al., 1991). In the following,
we investigate whether these and other geomorphological features, precipitation, and
distance to buildings, are suitable to identify flooded areas, which are not detected on
remote sensing products. The approach consists of using a satellite-based flood mask as
training area for a machine learning algorithm. The basic research question is: “if this is
the satellite-based flood mask, where then should we expect water in reality?”.

This question can be expressed as a supervised learning task, in which the labels
necessary for training are taken from the initial mask. Supervised models are able to
learn complex relationships from the explanatory features by optimizing an objective
function that penalizes misclassification of the provided labels in the training samples.
However, correct labels are required for training. Regular binary classifiers require
positive and negative (PN) examples. We argue in this paper that positive and unlabeled
(PU), rather than PN, is the appropriate description of state-of-the-art satellite-based
flood masks, as long as the limitations of these masks are not clearly communicated,
e.g. in a validity layer. This leads us to formulate our research question as a one-class
classification (OCC) problem. OCC algorithms require only one class to be labeld, termed
the positive (P) class. They may use either only P or PU training data, thereby avoiding
to wrongly treat unknown labels as true negatives. Such methods are commonly used in
habitat modelling (Phillips et al., 2006) as well as for specific remote sensing questions
like mapping raised bogs (Mack et al., 2016), invasive tree species (Piiroinen et al., 2018),
Bark Beetle infestation (Ortiz et al., 2013) or damaged maize fields (Jozani et al., 2020).
Mack & Waske (Mack and Waske, 2016) investigated the discriminative power of the
well-known PU algorithms MaxEnt (Phillips et al., 2006) and Biased Support Vector
Machine (BSVM, (Liu et al., 2003)) in comparison to a P classifier and a PN benchmark
model for a variety of classification tasks. PU learning is generally considered more
promising than P learning, especially when classes are not perfectly separable, because
PU algorithms may learn about the overall distributional characteristics. When using an
OCC on satellite-based flood masks, there is no need for a validity layer, as long as false
positives have been minimized during the creation of the flood mask (depending on the
algorithm, some violation of this assumption is acceptable).

The aim of this study is to improve satellite-based flood masks by reducing false
negatives in areas where the satellite sensor has low sensitivity, such as vegetated and
urban areas. Our investigation requires a flood event covered by multiple satellite-
based flood masks of different quality, relatively high resolution topography, gridded
rainfall measurements, and mapped building footprints. Additionally, we use high-
quality flood extent maps (“ground truth”) for testing the performance of the proposed
approach. We chose the well-documented event of 2017 hurricane Harvey in Houston,
TX, as test case. We present a novel methodology for extrapolation by OCC, and test it
with three different initial satellite-based masks on different spatial scales. The paper is
organized as follows: Section 2.3 gives a description of the flood event and used datasets,
followed by details on the algorithms, performance metrics, and experimental setup.
In Section 2.4, the skill of the BSVM and MaxEnt models is compared, and the effect
of a region-growing postprocessing is quantified. Example maps of spatial predictions
are shown for selected models. The results are then discussed in a broader context in
Section
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2.3 Materials & Methods

2.3.1 Study area and datasets

Hurricane Harvey ranks among the costliest disasters that affected the United States
during the last decades (NHC, 2018), with Houston in particular suffering severe
damage in the final days of August 2017. Although considered primarily a pluvial flood
event, with implications for modelling (Wing et al., 2019), the vast spatial extent and
long duration of the rainfall also caused all major river basins to overflow. According to
the Harris County Flood Control District (HCFCD), 70,370 out of 154,170 flooded homes
were located beyond the official 500-year flood hazard zone (Lindner and Fitzgerald,
2018). Water levels in the San Jacinto River exceeded all historical records, with estimated
return periods above 500 years in many places. In the western part of Houston, two
large-scale flood control structures, the Barker reservoir and the Addicks reservoir
(Figure 2.1) were forced to open their release gates on August 28, but the water level
within continued to rise until August 30 to the point of local overtopping, despite the
open gates (HCFCD, 2018). The combined outflow of both reservoirs led to a massive
flooding of the Buffalo Bayou. It is reported that about 14,000 homes were even located
within the reservoirs themselves.

Flood masks for training and validation

The following products were used in our study as initial flood masks for training the
OCC models: The EMSR released a mapping of areas inundated by Hurricane Harvey
on 31st of August 2017 (EMSR_229), based on Cosmo-SkyMed data. This is a typical
standard product, designed for rapid response. The EMSR_229 mask covers the entire
urban area of Houston and surroundings. Li et al. (Li, Martinis, Wieland, Schlaffer and
Natsuaki, 2019) further classified parts of a Sentinel-1 scene from August 30th, including
interferometric coherence with previous scenes, by a Bayesian Network fusion technique
(DLR_BN). Li et al. (Li, Martinis and Wieland, 2019) also processed TerraSAR-X images
by a convolutional neural network (DLR_CNN), with the flooded scene dating to
September 1st. The latter is only available for a rather small region within the city, along
the Buffalo Bayou. Both DLR_BN and DLR_CNN can be regarded as “high quality”
masks, with reported « coefficients of 0.68 in both cases from comparison to a labeled
aerial image. However, we observed some flaws in this labeling when comparing it to
the raw aerial image.

Validation in our study is based on two independent products: Firstly, we downloaded
the original 50 cm resolution aerial image acquired by the National Oceanic and At-
mospheric Administration (NOAA) on 08/30/2017 (https://storms.ngs.noaa.gov/
storms/harvey/index.html#9/29.8430/-95.0729) and manually labeled all flooded
areas on the image (NOAA_labeled) in three categories: open flood water, flooded veg-
etation, and flooded urban area. The land cover classes allow for calculating the model
skill in a stratified manner, providing numbers for vegetated and urban areas separately.
The guiding principle for assigning these land cover classes was to consider what is
visible from the point of view of a satellite. Small patches of open water within built-
up environment were still labeled “urban”, as the SAR signal in these locations would
most likely be influenced by the surrounding buildings. The main channel of the Buf-
falo Bayou was labeled “vegetation”, as there are mainly tree canopies visible from a
satellite’s perspective. Great care was taken to only include buildings in this reference
map where it was obvious, e.g. from the color of the swimming pools, that at least
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the ground floor of the building got affected — otherwise we only delineated the visi-
ble water on the roads. Permanent lakes within the urban areas were intentionally not
mapped, only the flood waters surrounding the regular lake extents. While some resid-
ual ambiguity remained between the assigned land cover classes, especially between
open water and flooded vegetation inside the large reservoirs, we are confident that
this manually labeled image is a very precise reference for the situation on 08/30/2017.
This reference map is publicly available as online supplement to this publication. Sec-
ondly, we obtained a mapping by the United States Geological Survey (USGS) for the
San Jacinto River (USGS_S]). The USGS has released flood extents for major river catch-
ments (Watson et al., 2018), based on interpolated field measurements of high water
marks (HWM), which have been used by the company Fathom (Wing et al., 2019) as
“ground-truth” for validating their hydraulic model simulation of the event. Watson
et al. (Watson et al., 2018) acknowledge that some uncertainties remain in areas where
the coverage of the HWM is sparse and that the mapped boundary was manually ex-
tended to anthropogenic structures such as roads or bridges. We overlayed all masks
with OpenStreetMap (OSM) waterways polygons (OpenStreetMap contributors, 2017),
which include categorized water bodies in high spatial detail, and removed all of these
areas from the masks, thereby equally converting all masks to flood masks.

95°48'W 95°36'W 95°24'W 9512’W 95°00'W
Areas of interest (AOI) NOAA_labeled
AOI1 : 'West Houston' I Flooded open area

AOI2 : 'Buffalo Bayou' [ Flooded vegetation
L.J AOI3 : 'San Jacinto' [] Flooded urban area
Background USGS HWM Interpolation
A: Google, TerraMetrics, ESRI ¢ High water marks (HWM) I Datum: NADS3, EPSG: 4269
B: NOAA 08/30/2017 [ Flooded area (USGS_SJ) Map created in QGIS 3.6

FIGURE 2.1: Overview map including the three AQOISs, the USGS interpolation of high water marks
(HWM), and the manually labeled aerial image from August 30, 2017. (A) Full extent. (B) West
Houston extent. The large vegetated areas are the Addicks reservoir (north) and Barker reservoir
(south). (C) Buffalo Bayou extent. Note the detailed mapping of streets. EMSR_229 covers the
entire area depicted on subplot A, while DLR_BN is available for AOI1 and DLR_CNN for AOI2.
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Explanatory features

An overview of used datasets and features is given in Table 2.1 and Table 2.2. A digital
elevation model (DEM) called the National Elevation Dataset (NED) is available from the
USGS, based on the best available data source per area (Arundel et al., 2015). We used the
1/3 arc seconds (~10 m) version. From the DEM, different features have been derived:
slope, curvature, topographic wetness index (TWI) and topographic position index (TPI).
The TPI is a geomorphological measure derived by focal window operations, which in
machine learning terminology can be considered a manual convolution on the DEM.
TPI has a clear physical meaning, as it indicates local hills and depressions. Combining
TPI on multiple scales allows for identifying more complex landscape morphologies
(Reu et al.,, 2013). We used the implementation in the R library spatialEco (Evans,
2021) and computed TPI on the scale of 11, 51, and 101 cells, which corresponds to
about 50, 250, and 500 m in all directions. The OSM water layer (http://hydro.iis.u-
tokyo.ac.jp/~yamadai/0SM_water/) distinguishes 5 types of water bodies in this area,
namely ‘Ocean’, ‘Large Lake & River’, ‘Major River’, ‘Small Stream” and ‘Canal’. We
discarded the ocean and merged ‘Small Stream” and ‘Canal’ as these labels appeared to
have been used interchangeably from visual inspection in the Houston area. This left us
with three different stream layers, for which we computed the HAND and Euclidean
distance separately (by GRASS r.watershed and GDAL Proximity). OSM buildings had
very limited coverage in Houston at the time of this study, therefore we used Microsoft
USBuildingFootprints (https://github.com/microsoft/USBuildingFootprints). The
Euclidean distance was computed on rasterized shapes, which corresponds to the
distance to the closest building cell. Gridded rainfall data was downloaded from the
US National Weather Service (NWS) website (https://water.weather.gov/precip/
download.php). We used the sum of August 26-30, where most of the rainfall occurred in
Houston. The accumulated rainfall was computed via the GRASS GIS tool r.accumulate,
with the rainfall sum as input. Features were separated into 3 groups for our
experiments. Most features were derived from the DEM and/or stream location data,
and therefore called “Topo’ features. These were always used. The 'Rain” and "Buildings’
features were added separately to test the effect of the additional data. To keep it simple
during processing, we resampled all datasets to the resolution of the DEM, so that all
layers could be converted to a raster stack.

TABLE 2.1: Floodmasks for training and validation

Floodmask Data source Date of image Resolution Usage
EMSR_229 Cosmo-SkyMed 31 August 2017 30 m Training
DLR_BN Sentinel-1 30 August 2017 15 m Training
DLR_CNN TerraSAR-X 01 September 2017 40m (32x1.25) Training
NOAA_labeled  Aerial image 30 August 2017 0.5m Validation

USGS_S] HWM Maximum extent 3m Validation
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TABLE 2.2: Datasets and features

Feature Data source Category
HAND_large_lake_river NED + OSM Topo
HAND_major_river NED + OSM Topo
HAND_small_stream_canal NED + OSM Topo
Dist_large_lake_river OSM Topo
Dist_major_river OSM Topo
Dist_small stream_canal OSM Topo
Slope NED Topo
Curvature NED Topo
TWI NED Topo
TPI 11x11 NED Topo
TPI 51x51 NED Topo
TPI 101x101 NED Topo
Rainfall sum NWS Rain
Rainfall_acc NWS + NED Rain
Dist_to_buildings Microsoft USBuildingFootprints  Buildings

2.3.2 Algorithms and performance metrics
OCC algorithms

Two commonly used PU learning algorithms are tested in this study for the purpose of
extrapolating satellite-based flood masks from the abovementioned features. BSVM (Liu
et al., 2003) is a discriminative algorithm, originally developed for text classification.
It was found superior to previous multi-step OCC procedures, and also to other P
and PU learners, for classification of remote sensing images (Mack and Waske, 2016).
Essentially, it is a support vector machine with radial basis function (RBF) kernel and
unequal misclassification penalty terms in the cost function. By assigning higher penalty
to misclassified positive samples, the unlabeled samples are considered “negotiable”
during training. The biased cost function is given as (Eq. 2.1)

1 k—1 n
Minimize EwTw +Cr Y &G+Co) g (2.1)
i=1 i=k

Subject to yi(wai +b)>1-¢;,i=1,2,..,n

&>0,i=12..,n

where C and C_ are the cost of misclassification for positive and unlabeled samples, respectively. C is
in practice parametrized by Cppytipiier times C—. w is the weight vector, x is the feature vector, and y is the
corresponding label. ¢ is the slack variable used to evaluate potential hyperplanes for k-1 positive and k-n
unlabeled samples. Superscript T denotes the inner product.

The so constructed hyperplane has by definition a value of 0, which can be regarded
as the “default’ threshold (6p,f,uir) for binary classification of BSVM. The continuous
output of BSVM gives the distance to this hyperplane, where higher values indicate
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samples associated with the positive class (i.e. flood in our case), and lower values
indicate samples associated with the negative class. However, a threshold for binary
classification can be set by the user at any value, and it is sometimes recommended in
literature not to rely on the default in application, (e.g. Mack and Waske, 2016). For the
PN benchmark models, we used a regular (unbiased) support vector machine (SVM), in
which the misclassification costs for both classes are equal.

MaxEnt (Phillips et al., 2006) is a generative algorithm with solid roots in information
theory and probabilistic reasoning (Jaynes, 1957). The implementation in a stand-alone
software, which is now open source (Phillips et al., 2017), is commonly used in ecological
modelling as well as for mapping rare land cover classes. The developers phrase the
objective of the maximum entropy principle as estimating a distribution that agrees
with everything that is known, and at the same time avoiding any assumptions about
what is unknown. More specifically, the procedure searches for a Gibbs distribution,
under the constraints that the expectation of every feature corresponds roughly to the
empirical feature mean, while pertaining a shape as close to the prior distribution as
possible. MaxEnt internally computes variance features, product features, threshold
features, and hinge features. This allows the algorithm to learn complex responses
and interactions, but requires regularization to avoid overfitting. The optimal value
of the regularization parameter § is accordingly determined over a grid search. Note
that the original formulation by (Phillips et al., 2006) is in geographic space, and
in that space the prior distribution is a uniform distribution, i.e. all locations are a-
priori equally likely to contain the positive class. More in line with machine learning
literature is the formulation in feature space, where the prior is the marginal feature
distribution, and MaxEnt estimates the distribution of the positive class by minimizing
the relative entropy (Kullback-Leibler divergence) between the positive and marginal
distributions under the constraints imposed by the feature means (Elith et al., 2010).
The formulation is unconditional, so that only positive and unlabeled data is required.
In other words, MaxEnt models the ratio of presence to background, which results in
a relative probability. The cost function (Eq. 2.2), in the notation of the authors, can be
shown to be the negative log-likelihood with an L1 penalty term.

Minimize 7t[—In(q,)] + Y_ B;|A] 2.2)
j

Subject to |7t[f;] — 7[f]| < B;

where 7 is the prior distribution, 7t the resulting MaxEnt distribution, g, the Gibbs distribution, square
brackets [] denote the expectation, In the natural logarithm, B is the cost parameter, and A the weights, over

j features f.

The result of MaxEnt is a relative occurrence rate, sometimes termed “suitability”,
which can be obtained in different transformed (monotonically related) output formats.
Similar to (Ortiz et al.,, 2013), we use a value 0.5 on the so-called logistic output
format as "default" threshold for MaxEnt, because this is the default value for the
internal parameter used to create the logistic output (Elith et al., 2010) — despite strong
arguments in literature stating that this output format should not be carelessly treated as
absolute probability of presence (Guillera-Arroita et al., 2014; Merow et al., 2013). This
theoretical issue is not of interest to us here, since we do not apply any probabilistic
interpretation. For further mathematical details, the interested reader is referred to the
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abovementioned original literature. In this study, we relied on the R library oneClass
(https://github.com/benmack/oneClass), which contains a BSVM implementation, as
well as an R wrapper of MaxEnt that calls the Java source file. Both implementations
internally scale the data.

Post processing by region growing

To restrict the predicted flood extent to those areas that have a spatial connection to
the initial extent, we applied the ConnectedThreshold method from the Python module
SimpleITK (Lowekamp et al,, 2013). The procedure starts at given seed points and
checks whether neighboring raster cell values fall within or outside a user-defined
range. As seed, the original SAR-derived flood extents were used. If a cell is discarded,
its neighbors are not considered and the propagation in that direction stops. When
providing a binary raster (dry or flooded, denoted as 0 or 1) and setting the user-defined
threshold to 1, then the result is simply a cut-back binary raster, on which all flood cells
unconnected to the initial flood extent are reset to non-flooded.

Performance metrics

Two different types of metrics are needed for this study: training metrics based on PU
data to select the best model during the parameter grid search, and validation metrics
based on the PN reference to evaluate the final extrapolations. With only positive and
unlabeled data, the quantities that can reliably be estimated are the True Positives (TP,
prediction and observation are positive), the False Negatives (FN, prediction misses
positive observation), and the model’s probability of positive predictions among all
predictions. From these quantities, various metrics have been proposed in literature (see
e.g. Lee and Liu, 2003; Mack et al., 2014). However, most of these metrics are depending
on the binarization threshold. For threshold-independent evaluation of binary classifiers,
it is common to compute the area under the curve (AUC) of the receiver-operator
characteristic (ROC) (Hanley and McNeil, 1982; Fawcett, 2006). The AUC indicates how
well the algorithm ranks the instances. For PU data, the best obtainable AUC value is
theoretically lower than 1, as some unlabeled samples should get ranked among the
positive class, but Phillips et al. (Phillips et al., 2006) have claimed that the difference
in AUCpy is still a valid measure to compare the discriminative power of multiple
models. In line with Phillips et al., we argue that AUCpy; is a consistent metric for model
selection, as it has the same meaning for any algorithm (BSVM has a different default
threshold than MaxEnt), and is adequate for any purpose. The user can later decide to
put more emphasis on sensitivity or specificity during threshold selection, depending on
the intended application of the model. We verified that AUCpy; indeed correlates with
AUCpy, which denotes the same metric based on PN reference data (Figure 2.2). While
even high PU performance is no guarantee for high PN performance, and the very best
model on test set might not be the rank #1 on training set, AUCpy; generally selects good
models, which makes it a reasonable choice in the absence of PN test data. This behavior
has been previously reported by (Mack et al., 2014), who suggest a manual inspection
of several candidate models. However, as we present a method rather than a specific
classification, manually inspecting several candidate models for each experimental setup
was deemed unfeasible and too subjective for a methodological study. It is worth to note
that we have conducted similar checks with other PU metrics in the early stage of this
study, but only present AUCpy here, due to the abovementioned consistency of this
metric.
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FIGURE 2.2: PU vs PN performance of all candidate models during the grid search for selected
setups. Each point represents a model trained on the same data, but with different parameters.
AUCpy is given as the mean of a 5-fold cross validation, AUCpy is a single score computed on
an independent test set of the reference data on the corresponding AOI. A shows a BSVM trained
on EMSR_229 and using USGS_S] as test set. B shows a BSVM trained on DLR_BN and using
NOAA _labeled as test set. C shows MaxEnt models trained on EMSR_229 and using USGS_S] as
test set. The green dot signalizes the selected model by the criterion of maximum AUCpy;, which
has been the basis of model selection for this study.

Validation metrics for PN data are more standard. We measure the commonly used
x score by Cohen (Cohen, 1960) as well as the sensitivity (true positive rate, Eq. 2.3),
specificity (true negative rate, Eq. 2.4), and error bias (EB, Eq. 2.5). To evaluate the initial
masks, we further provide the percentages of detected open water, flooded vegetation,
and flooded urban areas. The PN performance is given for the entire images, i.e. all
pixels, stratified by the manually assigned land cover class.

e TN
Specificity = (TN + FP) (2.4)
FP
EB=—— 2.
B N (2.5)

2.3.3 Experimental setup

The presented extrapolation procedure by OCC, as visualized in Figure 2.3, works in
four steps plus validation: (1) feature engineering, by which we mean the derivation
of explanatory variables (e.g. topographic indicators) from the raw data (e.g. DEM).
(2) Training data sampling, (3) model learning and (4) prediction. It requires a stack
of features in raster format, and an initial satellite-based flood mask. The learning step
includes a parameter grid search with cross validation, where AUCpy; is used as metric
for model selection. After a first coarse grid search, the fine tuning in each model run
was restricted to the following parameter grid: BSVM: ¢ = {0.1,0.5, 1,2}, C_ ={0.1,1, 5,
10, 25, 50, 250}, Cputtiptier = 1{2/4,6,8}. SVM: 0 ={0.1,0.5, 1, 2, 5}, C={0.1, 1, 5, 10, 25, 50, 250,
1000}. MaxEnt: fc = {D, LQ, LQP, H}, = {0.001, 0.01, 0.1, 1, 10, 50, 100, 500}. The selected
model is then re-trained with the full training data and applied to the entire feature stack.
This results in a single raster with continuous values, which represent the raw output of
the algorithms (i.e. distance to the hyperplane for BSVM, and relative probability for
MaxEnt) for each raster cell. To obtain a binary prediction (flooded or not), a threshold
has to be applied to this continuous prediction. Subsequent region-growing removes
areas without connection to the initial mask, which makes the result appear like an
inter-/extrapolation. The binary predictions, raw and postprocessed, are then validated
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FIGURE 2.3: Flowchart of the presented procedure

by comparison to the independent reference maps NOAA_labeled and USGS_S]J. The
difference between the binary predictions and corresponding binary reference results in
a validation map with the 4 classes TP, FP, TN, and FN.

Samples for training the models were drawn from the valid extent of the respective initial
mask, i.e. AOI1 for DLR_BN and NOAA _labeled, AOI2 for DLR_CNN, and AOI3 for the
USGS_S] benchmark. In the case of EMSR_229, which has by far the largest extent, it was
tested how the sampling area during training affects the skill. Eventually we used the
entire area covered by the feature stack as training area ("Full Extent") for the presented
results.

OCC methods have been applied to problems with very few positive training samples,
because these occur rarely or are expensive to obtain. In our case, obtaining positive
samples does not constitute a problem since we can potentially use the entire flood extent
as training area. The number of unlabeled samples should be high enough so that the
feature space during training is representative for the feature space in the application
case, i.e. more is better, limited only by concerns about computation time (Mack et al.,
2014). For each PU classification problem, we randomly sampled (without replacement)
2000 positive and 8000 unlabeled pixels. The PN benchmark models were trained with
5000 positive and negative samples each. Further, we tested two sampling modes, named
"regular” and "urban". In regular mode, samples were drawn entirely random. In urban
mode, samples were drawn in equal parts from a distance up to 20 m, 100 m and above
100 m distance to buildings. The idea behind this urban sampling was to provide the
algorithms with more of those samples which we consider to be difficult and of primary
interest. DLR_CNN, like the manually labeled reference, contains distinct labels for
flooded open water and flooded urban areas, so in that case for the urban mode we
instead only used the urban class.

Models were further trained on 4 different feature subsets as denoted in Table 2.2,
guided by the question of potential application. Both algorithms use regularization, so
theoretically there is no need for manual feature selection. However, models including
rainfall or distance to buildings require that additional data to be available, and might
potentially learn different types of patterns. Therefore we investigated these choices
separately. The subsets are: only topographic data and distance to streams (“Topo”),
the aforementioned plus rainfall data (“Topo+Rain”), topographic data plus distance to
buildings (“Topo+Buildings”) and all data combined (“All”).
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For the sake of providing consistent numbers, two thresholds were considered for all
models: the default (6pefauir), i-e. 0 for BSVM and 0.5 for MaxEnt, which is learned
from the PU training data, and the optimal threshold (GOPt) at maximum x, which
requires PN reference data. In practical application, the user would most likely inspect
the continuous prediction of the best models (selected by AUCpy;), before deciding on
the threshold. However, as we present a novel procedure here, we cannot inspect all
models in detail, and want to provide the maximum obtainable skill.

2.4 Results

2.4.1 Skill of the initial masks

To evaluate whether the proposed procedure is able to improve the initial masks, we
first quantified the quality of the original products by the same measures as used
for the models and using the same reference data (Table 2.3). EMSR_229, despite
detecting essentially no flooded vegetation or urban areas at all, still obtains a tolerable
accuracy score, due to its outstanding specificity (0.999), i.e. no false positives. The
higher overdetection in the San Jacinto area might also hint at errors in the USGS_SJ
reference. Also DLR_BN and DLR_CNN exhibit 0.99 and 0.98 specificity, respectively,
while detecting just 20-40% of the flooded vegetation and urban areas. This clearly
underlines our hypothesis, that these products should be regarded as positive and
unlabeled. EB consequently ranges between 0.001 for EMSR_229 to 0.13 for DLR_CNN,
indicating underdetection. Note that DLR_BN only achieves an overall « score of 0.34
(0.51 in urban areas) on our manually labeled reference, as opposed to 0.68 on the
inconsistently labeled reference used in the original study by (Li, Martinis, Wieland,
Schlaffer and Natsuaki, 2019). It is still a high quality product, judged by the specific
skill on urban areas.

TABLE 2.3: Skill of the initial masks on the AOIs used in this study. Reference data for AOI1 and

AOI2 is the manually labeled aerial image NOAA _labeled, reference for AOI3 is the USGS HWM

interpolation USGS_S]. The metrics EB, Sens., Spec., Acc., and « are calculated over all landcover

classes, while xyeq. and x4, were derived using only the flooded vegetation and flooded urban
areas, respectively.

Product - AOI %open %veg. %urban EB  Sens. Spec. Acc. K Kpeg  Kurban
EMSR_229 - 1/West Houston  32.06 1.16 0.43 0.001 0.06 0.999 063 007 0.01 0.01
EMSR_229 - 2/Buffalo Bayou 0 1.16 0 - 0 0 0 0 0 0

EMSR_229 - 3/San Jacinto - - - 001 005 099 0.76 0.06 - -

DLR_BN - 1/West Houston 69.01 19.60 41.36 003 032 099 073 034 024 051
DLR_BN - 2/Buffalo Bayou 3.53 6.93 23.27 004 021 099 082 028 006 031
DLR_CNN - 2/Buffalo Bayou 63.77  46.84 42.41 013 044 098 086 051 027 0.50

2.4.2 Skill of the extrapolation models

A full list of model setups and the threshold-independent ranking performance AUCpy,
as well as the training performance AUCpy;, can be found in the Appendix Table

The setup of our experiments (feature selection and sampling mode) apparently had
only minor impact on the results. The only remarkable finding in this context is that the
spatial transfer application of DLR_CNN models to the entire AOI1 gave much better
results with distance to buildings included. The best EMSR_229 models are those trained
on all features, and the urban sampling mode did slightly improve these models on the
urban AOI2 (Buffalo Bayou) — however, the same cannot be stated for the other initial
flood masks. The effect of feature selection on the benchmark models was also negligible.



2.4. Results 23

We interpret this as indication that the most important features are already included in
the “Topo” selection. In the following, we therefore analyze the models from different
setups together, as we consider them to rather show random variation than meaningful
differences. This adds a rough estimation of variance to our results and helps to visualize
the effect of algorithm selection, threshold selection and postprocessing more clearly.

The x score on validation data over all land cover classes (Figure 2.4) shows that all initial
flood masks can be considerably improved by the presented approach, with differences
to the best models ranging from about 0.2 (DLR_CNN) to 0.6 (EMSR_229 on AOIl).
Learned models are clearly performing best in their respective area of training: the West
Houston AOI for DLR_BN, and the Buffalo Bayou for DLR_CNN. In San Jacinto, the
best models are those learned from EMSR_229, which is the only initial mask that is
defined in all three AOIs. The skill obtained when extrapolating from the EMSR product
is mediocre on the Buffalo Bayou, where no flood was initially detected, better in the San
Jacinto basin, and surprisingly high in West Houston. Predictions of the other models
in San Jacinto, and also the application on the entire West Houston AOI for models
learned from DLR_CNN, are spatial transfer. It is unsurprising that performance is lower
in these cases, and not aim of the paper to improve this spatial transfer performance. The
overall skill of the best extrapolation from the EMSR_229 mask on AOI2 is similar to the
original DLR_BN product, and on AOI1 even competitive with the models learned from
DLR_BN and DLR_CNN — however, the improvements on AOI1 stem primarily from
correct detection of flooded vegetation, while the specific skill on urban flooding is still
relatively low. This can potentially be explained by the fact that AOI1 is dominated by
forest, while AOI2 is almost exclusively urban area, therefore the models are optimized
on different conditions. It is encouraging to see that all models learned from DLR_CNN
further improve this high quality initial flood mask in urban areas. Differences in x
between the best PU and PN models account to 0.15 on AOI1, 0.16 on AOI2 and 0.38
on AOI3.

On first glance, both algorithms perform similarly well, with MaxEnt often showing
larger variance, meaning it appears to be more sensitive towards setup than BSVM. One
notable difference is the skill on urban areas: MaxEnt models learned from DLR_BN
perform worse on urban areas than the initial mask. All MaxEnt models on AOI2
perform worse than their BSVM counterparts. At the same time, performance of MaxEnt
models for flooded vegetation on AOI1 is higher. Both algorithms were trained with
identical data, therefore the differences have to result from the model structure. It is
reasonable to assume that topography in vegetated areas behaves differently than in
urban areas. The training scores (Table 2.4) show that BSVM in general fits closer to the
training data. The initial flood masks DLR_BN and DLR_CNN already cover significant
areas of urban flooding, so the close fit could be one reason for the good performance on
urban areas in these cases. However, the case of EMSR_229 is less clear.

A remarkable difference was observed in robustness of the optimal classification
threshold (Figure 2.5). The optimal threshold value for BSVM varies considerably in our
experiments. This behavior may be a drawback for use cases without reference data,
and for integration into automatic processing chains. MaxEnt is slightly less affected by
this problem. Keep in mind, though, that the continuous output of both algorithms has
a different meaning and scale (unbounded distance to the hyperplane for BSVM, and
probability between 0 and 1 for MaxEnt). The average loss of skill for the PU models
is below 0.1, but in individual cases considerably higher. The suitability of the default
threshold may dependent on the representativeness of the training samples: For the
reference models, training and application data were drawn from the same underlying
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distribution, and in that case 0p,f.ui; and 6oy are closer, with the skill being almost
identical (Ax below 0.025).

Classification on pixel level may lead to noisy results and in some cases detect possible
flood in areas that were not affected by the event in question. Postprocessing, as
expected, increased the specificity in tradeoff for sensitivity, but overall ¥ was raised
as well (Figure 2.60). Beyond the intended effect, we also observed significantly reduced
noise from the initial mask, because random errors are unlikely to occur in the same spot
twice (meaning the satellite image classification and the classification from topography
as presented in this paper), so that these areas are removed. Specificity of the best
EMSR_229-derived extrapolations is again close to 1 after the postprocessing, meaning
that the derived flood extent is reliable. Obviously, the region-growing, which checks
for connectivity with the initial flood extent, only makes sense for those areas where the
initial mask is defined, not for spatial transfer (DLR_BN and DLR_CNN to San Jacinto,
DLR_CNN to aerial).
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of the boxplots includes both BSVM and MaxEnt models to visualize the general trend. Empty

boxes indicate that postprocessing is not possible because the initial mask does not exist on that

extent. Note that EMSR_229 is theoretically defined on AOI2, but there was no flood detected in
that area, therefore the region-growing would remove all predictions there.

2.4.3 Spatial comparison of predicted flood extents

The large-scale comparison (Figure 2.7) visualizes the general behavior of an OCC model
learned from the EMSR initial flood mask. The initial mask used for training (green)
is primarily located outside the test areas. Some disagreement between the training
mask and the validation mask is visible, especially in the west. The overestimation
(yellow area) is explainable given the training data, which are learned as true extent.
Note that the NOAA_labeled reference has been created by us, and we are accordingly
confident about the quality, while the USGS_S] mapping on the other hand is based
on interpolated high water marks, and could contain errors which we cannot further
evaluate. Note also that the underestimation visible on the map (red) stems to large parts
from the postprocessing, which removes predicted flood without spatial connection
to the initial mask. This is especially obvious for the channel of the Buffalo Bayou,
which is completely missing on the postprocessed version. The continuous prediction
outside the validation areas shows that the model has indeed learned quite smooth and
understandable patterns along the rivers. Also it is obvious that the models correctly
learned to exclude the permanent river channels.

An example model trained on DLR_BN (Figure 2.8) exhibits large fractions of correctly
identified flooded vegetation and coarse coverage of the affected urban areas. Visually
disturbing is the buffer around the channels that has been classified as non-flood, which
is also seen on the initial mask. This is probably an artifact from training on flood
masks instead of water masks. The area around these streams is covered by dense
forest. Note that the previously shown EMSR_229 model performed better along these
channels, presumably because it could learn the relationships of flooding along other
streams, which are less obstructed by vegetation. The DLR_BN model performs much
better on urban areas, though. There is underestimation visible along the Buffalo Bayou
settlements, yet the affected urban areas in the north and south-west are captured quite
well. These areas are colored mainly in yellow (overdetection) because the model did
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not restrict the predictions to the streets, which are visible as fine blue patterns, but the
affected area seems reasonable. The overestimation along the western channel is not
removed during postprocessing due to spatial connection with unluckily distributed
noise on the initial mask. Even with the highest quality initial mask, DLR_CNN
(Figure 2.9), water in the streets remains mostly undetected. Still, the extrapolation
outside the training area, visible in dark colors, appears smooth and connected. Noise
from the initial mask has been entirely eliminated. The land-water boundary appears
quite sharp.
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2.5 Discussion

2.5.1 Aim and overall success

The assessed satellite-based flood masks exhibit very low (EMSR_229) to moderate
(DLR_BN, DLR_CNN) detection skill in vegetated and urban areas. This is to be
expected, due to the various effects which constrain the information content of SAR
images in these cases, i.e. volume scattering, layover, oblique viewing geometries, and
others. The specificity of all these products is very high, though, meaning that those
areas, which are identified as flooded, indeed represent true flood. We therefore propose
to treat such products as PU data. Our study demonstrates how these satellite-based
flood masks can then be improved in vegetated and urban areas by an OCC procedure.
A critical point for such studies is the reliability of the reference data. We present a
performance evaluation on a precisely labeled aerial image, which is of higher quality
than what is frequently used in other studies (e.g. Giustarini et al., 2013; Matgen et al.,
2011). For the larger scale, we use the extent in the San Jacinto river as published by the
USGS, which is based on interpolated HWM and has been used as reference by (Wing
et al., 2019).

According to the performance metrics, all initial flood masks can be considerably
improved by the presented procedure. For the EMSR product, x over all classes rose from
0.06 to 0.76 in the best case with postprocessing, and from 0.00 to 0.25 in urban areas.
The high quality initial masks, DLR_BN and DLR_CNN, have also been successfully
enhanced up to about 0.2 points. Although the raw classification may at first lead to
some overestimation far off the initial mask, the postprocessing improved the specificity
as well as the visually perceived quality of the results, by suppressing uncorrelated
errors of the initial SAR classification and our classification from topographic data. In
a pluvial event, the formation of disconnected puddles is possible. The region-growing
may delete such correctly predicted puddles from the classification. However, if the
initial satellite mask contains a single pixel of that puddle, the area is kept. Whether
or not to apply this postprocessing is therefore also a question of the quality of the
initial mask. Overestimation after the postprocessing occurs mainly in places where
the reference mask disagrees with the input mask, meaning either false positives in
the input or false negatives in the reference data. For USGS_S], some uncertainty is to
be expected. For NOAA _labeled, minor differences might be induced by the different
acquisition times of the aerial and satellite images. The models were explicitly trained on
flood masks. For many applications it might be more suitable to generate water masks,
which include the permanent water. This should also solve the visible underdetection
along the streams in the DLR_BN models. We refer to extrapolation as growing areas
of flood detected on the initial datasets. Spatial transfer (e.g. DLR_BN to USGS_S])
did not work well. A local approach is necessary, because event characteristics differ
spatially. Although some extrapolation outside the extent of the initial mask is possible,
the predictions far off the original extent, and especially in different river basins, are
therefore deemed unreliable (note the difference here is between undetected flood on
the original extent of the satellite image, and areas outside the satellite image). Whether
the area in between two or more satellite images could be modelled by this approach has
not been investigated, but could be an interesting question to try in future studies.

2.5.2 Features and algorithms

Our analysis was based on features that have commonly been suggested in literature
for the purpose of flood susceptibility mapping (Samela et al., 2017; Chapi et al., 2017;
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Tehrany et al., 2018; Jalayer et al., 2014; Kelleher and McPhillips, 2019), like HAND,
TWI, distance to streams, and descriptors of the local topographic situation. The skill of
the PN benchmark models suggests that these features are indeed useful, also in urban
and vegetated areas, given a representative training set. In addition we tested whether
rainfall data and distance to buildings help to improve the models. The rainfall sum for
hurricane Harvey had very little spatial variance over the Houston area, therefore it is
rather unsurprising that it does not lead to an improvement here. We hesitate to draw a
general conclusion from this result, as the effect may be different for an event with more
heterogeneous rainfall distribution. The results of our investigation did neither show
clear improvements from using distance to buildings as a feature, nor from drawing
more training samples from urban areas, when learning from the DLR_BN initial mask.
However, the skill of the models learned from EMSR_229 did improve slightly, and the
transfer skill of models learned from DLR_CNN to AOI1 did improve strongly, when
including the distance to buildings. The sampling further seems to have at least a small
effect on the skill on urban areas for the EMSR_229 models. A possible explanation
is that DLR_BN already covers significant parts of urban and non-urban areas alike,
while DLR_CNN covers primarily urban flood, and EMSR_229 almost exclusively non-
urban flood. Therefore, the distance to buildings might be more useful in these models to
describe how feature distributions of flooded areas differ closer to and further away from
the city, respectively. Since the results do not indicate any negative effect of including
the distance to buildings, we suggest to include it when available. To further improve
the feature engineering, automating this step via deep learning might be an idea worth
investigating in future studies. Especially local context features, as generated by a CNN,
have been successful in improving various land cover classifications, including detection
of water (Yu et al., 2017; Wu et al., 2019).

Both tested OCC algorithms, BSVM and MaxEnt, performed similarly well in the overall
statistics. BSVM exhibits a closer fit to the training data, and is less affected by feature
selection and sampling. Ng & Jordan (Ng and Jordan, 2002) state that discriminative
algorithms often perform better than generative algorithms for complex classification
problems. This might partially explain why BSVM in most cases performs better
than MaxEnt in detecting urban flooding. However, explaining this finding remains
speculative to a certain extent. The best models on AOI1 and AQOI2 also came close
to the PN benchmark, but there is still a significant margin which indicates potential
for improvement. While we assume that our positive training labels are mostly correct,
there will for sure be some violation of this assumption. BSVM can theoretically handle
this problem to a certain extent, because outliers in the positive training samples will be
classified as negative if they are so far in the “negative realm” that the biased penalty
term is overruled. MaxEnt assumes positive samples to be clean from errors (Elith et al.,
2010), so a preprocessing of the initial masks might be an option to consider. Instead
of performing classification in one step, it is also possible to iteratively single out the
reliable negatives (Mack and Waske, 2016). As the amount of available training samples
in our task is relatively high, we did not implement such an iterative refinement, but
rather relied of the effectiveness of data. The effect of training label distribution is
debated and difficult to estimate without doing systematic tests for each dataset, as the
naturally occurring class distribution — even in cases where there is such a distribution —
is often not the most appropriate (Weiss and Provost, 2001). Besides this, also other PU
algorithms are available in literature, (e.g. Li et al., 2011; Ruff et al., 2018). If a validity
layer for the initial flood mask is available, an alternative approach would be to train any
regular PN classifier on the valid areas. Hydrodynamic simulations are able to model
flooding in vegetated and urban areas as well, e.g. Wing et al. (Wing et al., 2019) for the
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event in question. A drawback of our presented approach in comparison to a physical
model is that the machine learning models do not account for hydrodynamic effects, or
in general a closed water balance (no more water predicted than available). However,
we argue that a hydrodynamic simulation could make use of the improved flood masks
from our approach via data assimilation.

2.5.3 Threshold selection

As this paper presents a novel approach, rather than a particular classification, we
provide the threshold-independent score AUCpy, further performance metrics at 0o,
and the loss Ax when resorting to 6p,au;- We are fully aware that optimal threshold
selection in the absence of PN reference data is tricky. By which metric the user optimizes
the threshold selection will depend on the application case, i.e. how much sensitivity
or specificity is required. Maximum x may not be the desired quantity. Mack et al.
(Mack and Waske, 2016) further suggested a manual approach (i.e. not automated) to
derive a maximum a-posteriori threshold from a Gaussian mixture model analysis of
the posterior density of the continuous prediction. However, that procedure is based
on the assumptions that the posterior can be described by a combination of Gaussians,
and that the component with the highest mean value is equal to the positive class,
while all other components belong to the negative class. Another assumption in their
approach is that the classes do not overlap at a specified point used to estimate the
prior probabilities. These assumptions are certainly violated for some of our models,
and this approach is not feasible in the context of this paper, as we compare many
models to get an idea of the upper bound of performance of our procedure. MaxEnt also
provides a different form of output, called the cumulative format, which allows setting
a threshold based on the accepted omission rate (Phillips and Dudik, 2008). Depending
on the application, this may be a more desirable way of threshold selection. In cases
where the training data is representative, the most straightforward approach is to use
the default threshold, or to optimize a PU performance metric of choice on the training
data. For the benchmark models, training and application data were drawn from the
same underlying distribution, and in that case the skill at 6p.fs; and 0oy is almost
identical. This proves that the procedure is in principle able to obtain very good results,
given a representative training set. In the application using satellite-based flood masks,
a bias in the feature distributions of the positive training samples is to be expected, as we
know that the areas detected from satellite imagery are not entirely representative of the
true flood extent. Elith et al. (Elith et al., 2010) claim that PU models are even stronger
affected by sample bias than PN models, because sample bias affects both positive and
negative records in the PN case, but only the positive samples in the PU case. In our
case, this “sample bias” corresponds to the representativeness of the initial flood mask.
This leads us to assume that including additional positive class examples from within
the urban area could make the positive training data more representative, and thereby
improve the performance of the PU models at 0p,f,.1;- Such data could potentially be
taken from sources such as social media content or street camera footage, which is only
punctually available but provides data from within the city center.

2.6 Conclusion

We presented an extrapolation technique for satellite-based flood masks to unobservable
areas, by using OCC algorithms. Especially vegetated and urban areas still pose a
challenge to currently available remote sensing products, the latter of which are of major
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importance for impact estimation. The quality of the initial EMSR_229 mask was found
to be poor, detecting almost exclusively open water. Although it does exhibit very high
specificity, a map with extreme specificity but very low sensitivity is trivial (only few
easy-to-find spots detected) and of limited practical value. As long as the spatial validity
of satellite-based flood masks is not clearly communicated, e.g. by a separate validity
layer, we suggest treating them as positive and unlabeled in this context. OCC is then the
adequate tool, avoiding to explicitly train unobservable areas as “non-flooded”. Using
supervised machine learning for extrapolation is straightforward once using an OCC, as
the necessary positive labels for training are readily available from the initial mask. Our
procedure allows for predicting a continuous score of how likely flood is to be expected
per pixel, given the original mapping and the used features. A threshold can then be
applied to derive a binary classification, and a subsequent region-growing raises the
specificity of the extrapolation. From the user’s perspective, the presented method is
relatively simple to use, as the entire initial mask can be processed without the need to
exclude any areas from sampling. The most important features can already be generated
from a DEM and stream locations (which can also be derived from a DEM if necessary).
Distance to building footprints and gridded rainfall data did not consistently improve
the results, although positive effects were observed for some models.

We conclude that all three of the tested satellite-based products have been improved
to a certain extent. The absolute quality of the extrapolation, as well as the suitability
of the default threshold in application, hinges on the representativeness of the initial
mask. The features used in this study are not sufficient for a full separation of flooded
and dry locations, but a model trained on representative training data still achieves high
performance (AUCpy 0.91-0.98 in the benchmark case, 0.94 for the best PU model). The
method in its current form may be useful for statistical applications on a scale where
satellite imagery is utilized. It is not yet fit for analysis of individual streets, although the
results with high quality input seem promising. Potential application of the presented
method is not limited to masks from SAR data — it could also be used to fill holes
from clouds in masks from optical data, or tested for social media derived extents.
In particular, we see potential for future studies in the fusion of satellite-based flood
masks with spottily mapped flood locations within a city center, e.g. by social media or
street camera footage. Such a fused dataset is expected to provide more representative
coverage in feature space, which should lead to a more reliable default threshold. The
presented approach could be tested in this direction with the aim of deriving more
reliable flood extents in vegetated and urban areas.
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2.7 Appendix

TABLE 2.4: All model setups and threshold-independent ranking skill. Setup IDs 1-8 have been
excluded for the plots in the main publication, to ensure the same number of points for all initial
flood masks.

Setup ID  Algorithm Flood Mask Training Extent Sampling Features AUCpy AUCpN-AOIl  AUCpN-AOI2  AUCpN-AOI3

1 BSVM EMSR_229 AOI1 regular Topo 0.977 0.59 0.47 0.54
1 MaxEnt EMSR_229 AOI1 regular Topo 0.913 0.79 0.63 0.49
2 BSVM EMSR_229 AOI1 regular Topo+Rain 0.984 0.78 0.62 0.52
2 MaxEnt EMSR_229 AOIl1 regular Topo+Rain 0.942 0.78 0.62 0.56
3 BSVM EMSR_229 AQI1 regular  Topo+Buildings  0.981 0.75 0.54 0.58
3 MaxEnt EMSR_229 AOIl regular  Topo+Buildings 0.928 0.74 0.67 0.54
4 BSVM EMSR_229 AOI1 regular All 0.988 0.75 0.58 0.49
4 MaxEnt EMSR_229 AOI1 regular All 0.946 0.73 0.64 0.58
5 BSVM EMSR_229 AQI3 regular Topo 0.896 0.76 0.68 0.77
5 MaxEnt EMSR_229 AOI3 regular Topo 0.848 0.79 0.6 0.75
6 BSVM EMSR_229 AQI3 regular Topo+Rain 0.911 0.75 0.69 0.76
6 MaxEnt EMSR_229 AOI3 regular Topo+Rain 0.844 0.79 0.58 0.75
7 BSVM EMSR_229 AQOI3 regular ~ Topo+Buildings ~ 0.917 0.86 0.73 0.77
7 MaxEnt EMSR_229 AQOI3 regular  Topo+Buildings  0.872 0.89 0.76 0.78
8 BSVM EMSR_229 AOI3 regular All 0.927 0.84 0.69 0.76
8 MaxEnt EMSR_229 AOI3 regular All 0.866 0.85 0.61 0.76
9 BSVM EMSR_229 Full Extent regular Topo 0.861 0.76 0.65 0.7

9 MaxEnt EMSR_229 Full Extent regular Topo 0.82 0.84 0.61 0.71
10 BSVM EMSR_229 Full Extent regular Topo+Rain 0.881 0.82 0.59 0.75
10 MaxEnt EMSR_229 Full Extent regular Topo+Rain 0.834 0.83 0.61 0.72
11 BSVM EMSR_229 Full Extent regular  Topo+Buildings 0.89 0.84 0.64 0.74
11 MaxEnt EMSR_229 Full Extent regular  Topo+Buildings  0.86 0.89 0.59 0.76
12 BSVM EMSR_229 Full Extent regular All 0.905 0.84 0.62 0.76
12 MaxEnt EMSR_229 Full Extent regular All 0.87 0.89 0.6 0.76
13 BSVM EMSR_229 Full Extent urban Topo 0.85 0.77 0.67 0.7

13 MaxEnt EMSR_229 Full Extent urban Topo 0.645 0.72 0.56 0.58
14 BSVM EMSR_229 Full Extent urban Topo+Rain 0.88 0.8 0.68 0.72
14 MaxEnt EMSR_229 Full Extent urban Topo+Rain 0.664 0.74 0.58 0.59
15 BSVM EMSR_229 Full Extent urban  Topo+Buildings  0.86 0.75 0.68 0.67
15 MaxEnt EMSR_229 Full Extent urban  Topo+Buildings  0.595 0.82 0.64 0.66
16 BSVM EMSR_229 Full Extent urban All 0.889 0.78 0.71 0.72
16 MaxEnt EMSR_229 Full Extent urban All 0.599 0.82 0.64 0.66
17 BSVM DLR_BN AOI1 regular Topo 0.891 0.86 0.81 0.6

17 MaxEnt DLR_BN AOIl regular Topo 0.804 0.87 0.65 0.6

18 BSVM DLR_BN AOI1 regular Topo+Rain 0.904 0.83 0.81 0.54
18 MaxEnt DLR_BN AOI1 regular Topo+Rain 0.807 0.87 0.65 0.6

19 BSVM DLR_BN AOI1 regular  Topo+Buildings ~ 0.905 0.82 0.82 0.59
19 MaxEnt DLR_BN AOIl regular ~ Topo+Buildings  0.809 0.86 0.64 0.61
20 BSVM DLR_BN AOI1 regular All 0.914 0.8 0.81 0.53
20 MaxEnt DLR_BN AOQI1 regular All 0.812 0.86 0.64 0.61
21 BSVM DLR_BN AQI1 urban Topo 0.866 0.84 0.83 0.56
21 MaxEnt DLR_BN AQI1 urban Topo 0.672 0.85 0.73 0.67
22 BSVM DLR_BN AQI1 urban Topo+Rain 0.882 0.81 0.82 0.52
22 MaxEnt DLR_BN AOI1 urban Topo+Rain 0.672 0.85 0.73 0.66
23 BSVM DLR_BN AQI1 urban  Topo+Buildings  0.886 0.77 0.83 0.54
23 MaxEnt DLR_BN AOI1 urban  Topo+Buildings  0.538 0.87 0.64 0.69
24 BSVM DLR_BN AQI1 urban All 0.895 0.77 0.82 0.51
24 MaxEnt DLR_BN AOI1 urban All 0.539 0.87 0.64 0.68
25 BSVM DLR_CNN AQI2 regular Topo 0.902 0.63 0.9 049
25 MaxEnt DLR_CNN AOI2 regular Topo 0.876 0.65 0.94 0.63
26 BSVM DLR_CNN AOI2 regular Topo+Rain 0.904 0.62 0.91 0.47
26 MaxEnt DLR_CNN AOI2 regular Topo+Rain 0.879 0.59 0.93 0.57
27 BSVM DLR_CNN AOI2 regular ~ Topo+Buildings  0.904 0.81 091 0.5

27 MaxEnt DLR_CNN AOI2 regular  Topo+Buildings  0.876 0.88 0.94 0.72
28 BSVM DLR_CNN AOI2 regular All 0.906 0.62 0.94 0.55
28 MaxEnt DLR_CNN AOI2 regular All 0.88 0.84 0.93 0.64
29 BSVM DLR_CNN AOI2 urban Topo 0.918 0.69 091 0.5

29 MaxEnt DLR_CNN AQI2 urban Topo 0.889 0.67 0.92 0.52
30 BSVM DLR_CNN AQOI2 urban Topo+Rain 0.923 0.58 0.91 0.53
30 MaxEnt DLR_CNN AQI2 urban Topo+Rain 0.901 0.68 0.93 0.56
31 BSVM DLR_CNN AOI2 urban  Topo+Buildings  0.926 0.49 0.88 0.5

31 MaxEnt DLR_CNN AQI2 urban  Topo+Buildings 0.9 0.72 0.9 0.6

32 BSVM DLR_CNN AOI2 urban All 0.931 0.58 0.91 0.44
32 MaxEnt DLR_CNN AQI2 urban All 0.909 0.71 091 0.63
33 SVM NOAA_labeled AOI1 regular Topo 0.966 0.97 0.92 0.63
34 SVM NOAA _labeled AQI1 regular Topo+Rain 0.971 0.97 0.93 0.6

35 SVM NOAA_labeled AQOI1 regular  Topo+Buildings  0.970 0.97 0.93 0.64
36 SVM NOAA_labeled AOI1 regular All 0.973 0.98 0.94 0.62
37 SVM NOAA_labeled AOI2 regular Topo 0.976 0.57 0.98 0.54
38 SVM NOAA_labeled AOI2 regular Topo+Rain 0.980 0.57 0.98 0.49
39 SVM NOAA_labeled AOI2 regular  Topo+Buildings  0.978 0.59 0.98 0.47
40 SVM NOAA_labeled AOI2 regular All 0.982 0.62 0.98 0.43
41 SVM USGS_SJ AOI3 regular Topo 0.912 0.84 0.66 0.92
42 SVM USGS_S] AQOI3 regular Topo+Rain 0.925 0.85 0.68 0.94
43 SVM USGS_S] AQI3 regular  Topo+Buildings  0.923 0.86 0.67 0.93

44 SVM USGS_SJ AOI3 regular All 0.934 0.85 0.7 0.94
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Chapter 3

On the role of floodplain storage and
hydrodynamic interactions for flood
risk estimation

3.1 Abstract

Hydrodynamic interactions, i.e., the floodplain storage effects due to inundations
upstream on flood wave propagation, inundation areas, and flood damage downstream,
are important but often ignored in large-scale flood risk assessments. Though new
methods considering these effects emerge, they are often limited to small or mesoscale. In
this study, we investigate the role of hydrodynamic interactions and floodplain storage
on flood hazard and risk in the German part of the Rhine basin. To do so, we compare
a new continuous 1D routing scheme within a flood risk model chain to the piece-
wise routing scheme, which largely neglects floodplain storage. The results show that
floodplain storage is significant and lowers water levels, discharges, and reduces risks by
over 50%. Therefore, for accurate risk assessments, a system approach must be adopted,
and floodplain storage and hydrodynamic interactions must carefully be considered.

3.2 Introduction

Large-scale flood risk assessments are needed for national policy developments, disaster
management planning, and the insurance industry (de Moel et al., 2015). However,
studies presenting large-scale flood risk assessments are still rare and suffer from data
and methodological limitations regarding the realistic representation of hydrodynamic
interactions (Vorogushyn et al., 2018).

With hydrodynamic interactions, we understand changes in discharge, water levels,
and, consequently, hazard and risk downstream the river network due to inundation
and water storage in the upstream reaches. Hence, the term includes lateral interactions
between the river channel and the floodplains and longitudinal interactions between
upstream and downstream locations. Concrete examples are the discharge reducing
effects of flooding due to the overflow of embankments or breaches and detention
areas. Such interactions are complex and depend on several factors, including floodplain
topography, the presence of dikes, and their failures. Floodplain topography determines
the amount of stored water and thus flood wave attenuation. Dike failures result
in flooding of protected floodplains which, in turn, affects flood hazards of areas
downstream.



34 Chapter 3. On the role of floodplain storage and hydrodynamic interactions for flood risk estimation

A common approach for large-scale flood mapping and risk assessment is based on the
estimation of peak discharge values associated with certain return periods at gauge
locations, which are subsequently used as boundary conditions for hydrodynamic
simulations. The results of these local simulations are mosaicked into a large-scale
picture (‘mosaicked approach’). Some approaches used uniform return periods to
estimate peak flows for entire countries (Bradbrook et al., 2005; Merz et al., 2008) or even
continents (Alfieri et al., 2013). The assumption of a uniform return period, if used for
risk assessments of larger areas, contravenes the basic spatial dependence structure of
floods and leads to an overestimation of flood damage for high return periods (Nguyen
et al., 2020; Metin et al., 2020; Vorogushyn et al., 2018). The expected annual damage
is, however, not necessarily affected by the homogeneous return period assumption
(Metin et al., 2020). Recently, several studies used multivariate extreme value models for
estimating peak discharges (Keef et al., 2009; Lamb et al., 2010; Ward et al., 2013; Jongman
et al., 2014; Wyncoll and Gouldby, 2015; Quinn et al., 2019; Winter et al., 2019). These
approaches generate patterns of spatially dependent peak flows at multiple gauges with
heterogeneous return periods.

To use peak flows (with homogenous or heterogeneous return periods) for unsteady
hydrodynamic simulations, assumptions about the flow hydrographs are needed, e.g.,
typical hydrograph shapes scaled to the predefined peak magnitude. Hydrodynamic
simulations are then carried out for individual reaches, i.e., piece-wise, whereas a new
boundary condition is assigned at the next downstream gauge (e.g. Alfieri et al., 2016;
Falter et al., 2016; Quinn et al., 2019). This approach is valid only for a single river reach.
In a larger river network, it results in an inconsistent, not mass conservative sets of flood
hydrographs, inundation areas and risk estimates (Curran et al., 2019). Reach-wise or
piece-wise routing is still common for many large-scale risk assessment studies (Alfieri
et al., 2016; Quinn et al., 2019).

Flood hazard and risk assessment approaches considering hydrodynamic interactions
have emerged in recent years and deploy continuous hydrodynamic simulations along
a single river reach or in a larger river network. These approaches account for floodplain
storage effects caused by inundation considering or disregarding dike failures. Apel
et al. (2004) and Vorogushyn et al. (2010, 2012) indicated the effect of hydrodynamic
interactions on flood hazard and risk at the Lower Rhine and a small reach of the
Elbe River, respectively, due to dike failures. Apel et al. (2009), for instance, showed
that the design flood at the German-Dutch border is significantly reduced when dike
breaches are stochastically considered, compared to the gauge-based extreme value
statistics, which does not fully account for hydrodynamic interactions. van Mierlo et al.
(2007) indicated the effect of hydrodynamic interactions for a dike ring in the Rhine-
Meuse delta. de Bruijn et al. (2014) compared scenarios with and without hydrodynamic
interactions for the entire Rhine-Meuse delta in terms of the number of simulated dike
breaches and resulting estimates of flood fatalities. They showed that the estimated
annual probability of life loss is more than doubled in the scenario without considering
dike failures. Curran et al. (2019) continued their work and further improved the method
by better representing floodplain flows. Recently, Ciullo et al. (2019) demonstrated
how hydrodynamic interactions resulting from dike breaches in the IJssel River in the
Netherlands affect the optimal dike height in a cost-benefit framework. They concluded
that disregarding the dike failures mutual dependence results in suboptimal design
height and increased overall costs. Dupuits et al. (2019) came to the same conclusion
using a similar setting applied for a case study in a small region in the Netherlands.
These approaches, however, have used one or very few locations to define the boundary
conditions for hydrodynamic models, and do not consider the upstream part of the
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catchment with several tributaries and rainfall distribution issues. Hydrodynamic
interactions are expected to gain importance with increasing spatial scale and number
of tributaries and in lowland rivers with large floodplain storage capacities (Vorogushyn
etal., 2018). Hence, there is a need to consider hydrodynamic interactions for large-scale
risk assessments.

Although the role of the floodplain in attenuating floods in large-scale basins is
generally understood (de Paiva et al., 2013; Yamazaki et al., 2011, 2012) the implications
for flood risk are not well investigated. Fleischmann et al. (2019) have investigated
the role of the floodplains in large scale catchments using the MGB inline coupled
hydrologic-hydrodynamic model. They concluded that the absence of right floodplain
representation in the model would lead to an expressive discharge overestimation with
higher peaks and faster recession limbs.A continuous simulation approach represents
an alternative way to estimate flood hazard and risk for large-scale basins compared
to the mosaicked approach. It is based on a model chain covering the whole flood
hazard /risk process cascade from heterogeneous patterns of precipitations, runoff
generation in the catchments, river discharge down to inundation and damage. This
approach, termed ‘Derived Flood Risk Analysis’ (Falter et al.,, 2015), extends the
‘Derived Flood Frequency Approach based on continuous simulation” (e.g. Blazkova
and Beven, 2004), often used for flood design estimation. Hence, depending on the
goal, the model chain can be truncated and focus on discharge or flood frequency
estimation (Hegnauer et al., 2014; Haberlandt and Radtke, 2014), inundation area
estimation (Grimaldi et al., 2013) or flood damage and risk assessment (Falter et al.,
2015, 2016). The model chain is driven with observed or synthetic climate data, e.g.,
provided by a stochastic weather generator. The rainfall-runoff modelling provides
flow hydrographs at specific locations, which are used as boundary conditions for
hydrodynamic flood simulations. Contrary to the gauge-based multisite models, this
approach delivers spatially consistent, mass-conservative, and time-continuous flow
hydrographs at multiple locations (depending on the structure and resolution of the
hydrological models). These continuous flow hydrographs are used as upstream and
lateral boundary conditions for continuous hydrodynamic simulations considering
hydrodynamic interactions. Continuously coupled rainfall-runoff and hydrodynamic
simulations are state-of-the-art (e.g., (Biancamaria et al., 2009; de Paiva et al., 2013;
Hegnauer et al., 2014), but they are rarely deployed so far for large-scale flood risk
assessments due to their complexity and computational constraints. Winsemius et al.
(2013) used a global hydrological model coupled to a kinematic wave routing scheme
with simplified inundation approximation for past damage reanalysis. Particularly, two-
dimensional hydrodynamic models are computationally demanding when it comes to
the long-term simulation of multiple scenarios needed for risk assessments. To our
knowledge, there exists no large-scale risk analysis based on a continuous hydrologic-
hydrodynamic simulation driven by a long-term weather generator.

In the presented study, we analyse the effect of hydrodynamic interactions on flood
hazard and risk assessment for the Rhine basin (185,260 kmz). In particular, we focus on
the importance of these interactions with increasing basin scale by comparing (1) flood
flows, (2) overtopping volumes, (3) inundation patterns and (4) damage to residential,
commercial and agricultural sectors. The comparison is done between assessments with
and without consideration of floodplain storage and interactions at different locations
upstream and downstream of the basin by comparing two model chains: one based
on a sub-basin wise river routing and a fully continuous hydrodynamic approach.
Indeed, there are several studies focussing on modelling floodplain flow, but they do
not quantify the effect on flood risk. The contribution of our study is to address how this
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interaction result in redistribution not only the hazard part (similar to previous studies)
but also the estimated damage and risk.

The paper is organised as follows. Section 2 provides a detailed description of the
RFM model chain using a piece-wise and a newly implemented continuous routing.
The model setup for the Rhine case study, input data for each component of the
RFM model chain, and the design of the computational experiments are detailed in
section 3, followed by a discussion of the results and conclusions. The cross-section data
derivation, extensive model validation, including a comparison of simulated maximum
annual discharge/water levels against observations, are presented in detail in the
Supplement.

3.3 Methods

For the analysis of hydrodynamic interactions, we use the Regional Flood Model (RFM)
(Falter et al., 2015, 2016), representing a model chain for time-continuous, spatially
consistent simulation of flood processes from atmospheric input to flood damage and
risk. It consists of several components, including the multisite, multivariate Regional
Weather Generator (Hundecha et al., 2009; Nguyen et al., 2021), the SWIM rainfall-
runoff model (Krysanova et al., 1998), a 1D river routing model based on diffusive wave
approximation coupled to a 2D raster-based hinterland inundation model (Falter et al.,
2015, 2016) and the FLEMO flood loss estimation model (Kreibich et al., 2010; Thieken
et al., 2008) Figure

3.3.1 Regional Weather Generator (RWG)

The multisite, multivariate weather generator RWG (Regional Weather Generator) is a
stochastic model which generates daily time series of precipitation at multiple locations.
Based on the state of the generated precipitation (dry/wet), the RWG then generates
non-precipitation variables such as temperature (minimum, average, and maximum),
relative humidity, and solar radiation. RWG was introduced by Hundecha et al. (2009)
and was recently comprehensively evaluated by Nguyen et al. (2021). RWG assumes that
extreme precipitation events have different stochastic behaviour compared to the normal
precipitation regime. Hence, it uses a mixed distribution, i.e., Gamma distribution for
bulk precipitation and a more heavy-tailed Generalised Pareto distribution for extreme
precipitation. The spatial and temporal dependence is represented by a first-order
multivariate autoregressive model considering the spatial covariance structure. The
distribution of the full range of precipitation (including zero precipitation) is formulated
by combining the mixed distribution and the frequency of non-zero precipitation. For
relative humidity and the temperature variables, the normal distribution is used. For
solar radiation, the square-root transformed data is fitted to the normal distribution
due to its relatively strong right skewness. RWG is parameterised on a monthly basis
to account for seasonality.

3.3.2 Rainfall-runoff model (SWIM)

The hydrological model SWIM (Soil and Water Integrated Model) (Krysanova et al.,
1998) is a conceptual semi-distributed rainfall-runoff model for mesoscale catchments.
SWIM computes average daily runoff at sub-basin spatial discretisation. Each sub-basin
is further subdivided into hydrological response units or hydrotopes, where soil type,
land use, and average water table depth are assumed to be homogeneous. Runoff
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is calculated for each hydrotope and then aggregated on a sub-basin scale. SWIM
is driven by daily precipitation, maximum and minimum air temperature, relative
humidity, and solar radiation. SWIM relies on the water balance equation considering
snow, precipitation, evapotranspiration, percolation, surface and subsurface runoff,
recharge, and capillary rise. The model applies the SCS curve number method for surface
runoff volume estimation. For the routing between sub-basins, the Muskingum routing
approach is used (Cunge, 1969).

3.3.3 Regional Inundation Model (RIM)

RIM model consists of a 1D hydrodynamic routing model coupled with a 2D
hinterland inundation model. The 1D hydrodynamic model solves the diffusive wave
approximation of the shallow water equations (SWEs) (Eq. & 3.2), where the first
two terms- (local and advective acceleration) are neglected in the momentum equation

(Eq. 3.1).
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where Q is the discharge (m;), A is the cross-section area (m2), g is the gravitational acceleration (st)' So is
the bed slope (%), Sy is the friction slope (%), x is the distance (m), and t is time (s).

An explicit finite difference scheme is used to solve the equations with adaptive
time steps following the Courant-Friedrichs-Lewy criterion to secure numerical model
stability. However, numerical instabilities may occur due to a sudden increase in
the value of the wetted perimeter (P) with a minimal increase in water depth. Such
instabilities may happen when the water level exceeds the bankfull area, and overbank
flow occurs. Fread (1976) and Smith (1978) solved this problem by dividing the system
into two separate conveying systems, i.e., a compound channel. We adopted this solution
following Eq.

aQbf aAbf 0Q0verbank | OAOverbank
ox TTat T e T Y

(3.3)
where Q_bf is the discharge conveyed within the channel ("’73), Abf is the bankfull (m?) area and
Q_Overbank is the discharge ('”73) conveyed through Aoverbank the overbank area (m?).

The deployed solution of the SWEs uses water depth as an upstream boundary
condition. Therefore, the flow hydrograph resulting from summing up all the upstream
flow (lateral & upstream river branch) is converted into the water depth using Manning’s
equation for the very first cross-section in each sub-basin. To establish a stage-discharge
relationship, the bed slope and hence cross-section bankfull depth are calibrated.

The 1D model uses simplified cross-section data that consist of two components:
overbank river geometry and bankfull area. The cross-sections represent the river
geometry between left and right dike crests or elevated banks. The overbank geometry is
represented by the trapezoidal shape described by six points. Model discretisation and
derivation of cross-sections are detailed in the Supplement. In this study, we use two
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implementations of the 1D hydrodynamic model to quantify the effect of hydrodynamic
interactions. In the original model version (RIM1.0), a piece-wise routing of overbank
flow was implemented (Falter et al., 2015, 2016) (Supplement Figure A). The bankfull
depth is not explicitly represented in the cross-sections (Supplement Figure )-
Discharge corresponding to the bankfull depth is subtracted at the upstream node
of each sub-basin, where runoff from the SWIM model is assigned as a boundary
condition. Hence, floodplain storage effects due to dike overtopping and inundation,
i.e.,, hydrodynamic interactions, are considered only within single sub-basins and are
not propagated across the sub-basin boundaries.

Further, a continuous routing approach (RIM2.0) is implemented (Supplement
Figure B), which is based on the full cross-section geometry, i.e. rectangular
bankfull area and trapezoidal overbank geometry (Supplement Figure )- The flow
is continuously routed through the entire river network. In this way, storage effects due
to dike overtopping and floodplain inundation on downstream flow hydrographs can
be explicitly accounted for. RIM2.0 uses the same computational engine as RIM1.0 based
on the explicit solution of the diffusive wave equation. Derivation of cross-sections for
both RIM1.0 and RIM2.0 models is detailed in the Supplement.

The 2D hinterland inundation model is deployed when water levels in the river channel
overtop dike crests. The outflow into the hinterland is calculated with the broad crested
weir equation and provided as a boundary condition for the inundation model. The
connection between 1D and 2D models is one-way, where no return flow from the 2D
model to the 1D channel is currently accounted for. As soon as the water level in the
river channel drops below the crest level, no further overtopping flow is simulated. The
2D hinterland inundation model solves Eq. and Eq. in two dimensions with a
neglected advection acceleration term. The 2D model domain is discretised into a regular
grid to compute fluxes q per unit width in both directions, x and y and update water
depths h in each raster cell (i, j). The explicit solution for q proposed by Bates et al. (2010)
(Eq. 3.4) reads:
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where n is Manning’s roughness (ﬁ), h Flow 18 the flow depth between cells (1), and At is the time step (s).

Then water depth is calculated based on the continuity equation (Eq. 3.5). An adaptive
time step (Eq. 3.6) is used to improve the stability of the numerical scheme, where the
value of parameter a ranges from 0.2 to 0.7, as suggested by Bates et al. (2010)). The
2D hydrodynamic code using an explicit finite-difference scheme is implemented in
the CUDA Fortran environment to enable simulations on highly parallelised NIVIDIA
Graphical Processor Units (GPUs) (Falter et al., 2016).
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For each flood event, where dike overtopping and hinterland inundation occur, two
grids are produced: maximum water depth and inundation duration. The extracted grids
are used as input for the flood loss model. The season of the event is also recorded since it
is required for the agricultural loss calculation. To limit the 2D computational time, water
depths are set to zero ten days after the last overtopping day of a dike. It is expected
that the maximum depths and extent relevant for damage estimation have been reached
within this period.

3.3.4 Flood damage and risk estimation
Flood damage models

The loss estimation component of the model chain is based on the FLEMO models
for private and commercial sectors and an agricultural loss model. These models are
developed from empirical damage data of German river floods and validated in previous
modelling studies (Klaus et al., 2016; Kreibich et al., 2010; Seifert et al., 2010; Kuhlmann,
2010; Thieken et al., 2008). For the private and commercial sector, damage functions to
estimate relative losses to buildings and content are based on water depth, discretised
into 6 levels (<0.21, 0.21-0.6, 0.61-1, 1.01-1.5, >1.5 m). The private sector model,
FLEMOps, additionally distinguishes 3 building types (single-family, semi-detached,
multi-family) and 2 building quality levels (low/medium quality, high quality) (Thieken
etal., 2008). The commercial sector model FLEMOcs considers additionally 4 sub-sectors
(producing industry, trade, corporate services, public & private services) and 3 company
size classes according to the number of employees (1-10, 11-100, > 100) (Kreibich
et al., 2010). For the agricultural sector, the relative damage functions are based on four
inundation duration classes (1-3, 4-7, 8-11, >11 days), the month of the flood, and 7 crop
types (canola, maise, potatoes, sugar beet, barley, rye, wheat (Kuhlmann, 2010; Klaus
etal., 2016). The damage models use the inundation results produced by RIM to perform
spatial intersection with the exposed assets and apply the FLEMO damage functions
specific to each sector, implemented via table joins on a PostgreSQL database.

Exposure estimation

Residential building asset values for Germany are estimated according to the approach
of (Kleist et al., 2006), who based their estimates on official statistical data, i.e. a total
living area for three classes of residential buildings per district provided by the Federal
Statistical Office of Germany and the standard construction costs per square meter gross
floor space published by the German Federal Ministry of Transport, Building and Urban
Development. The asset values are disaggregated based on the ATKIS land cover data,
according to Wiinsch et al. (2009). Based on Paprotny et al. (2020), residential content
values are derived from the building values by dividing them by 5.09 (ratio between the
household building and content values in Germany at the 2018 price level). Commercial
building and content values are estimated according to Paprotny et al. (2020a) using
Eurostat data (e.g., distribution of company sectors per NUTS3 region, gross value
added for the NUTS3 region by economic activity, fixed assets by the economic activity)
and disaggregation to ATKIS land cover. The agricultural exposure, i.e. revenues, are
estimated by multiplying the yield with the sales price (Kuhlmann, 2010; Klaus et al.,
2016). The revenue (in Euro per hectare) of a particular crop in a region, averaged
over five years (to equalise strong annual fluctuations), is determined with the help
of an agricultural statistics database. Regional differentiation considers 38 districts in
Germany.
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Risk metrics

The occurrence exceedance probability (OEP) is used as a risk metric. OEP is the
probability that the maximum loss from a single event in a given year exceeds a certain
amount. OEP is calculated by ranking the most severe loss event per simulated year and
counting the number of years in the entire time series, in which the loss of a given event
is exceeded. These damage-exceedance probabilities are plotted in a flood loss curve. The
expected annual damage (EAD) equally distributes the risk over the time series and is
computed as the area under the OEP curve (e.g. Merz et al., 2009). The value at risk (VAR)
gives the expected damage for a specific exceedance probability, while the tail-value at
risk (TVAR) is defined as the average expected damage above the threshold used for
VAR. We provide these measures based on the 100-year event, which corresponds to a
simulated 0.99 probability of non-exceedance in a given year.

3.4 Setup of the Regional Flood Model for the Rhine basin

3.4.1 Study area

The river Rhine is one of the largest rivers in Europe, with a total length of 1,233 km and
a total catchment area of 185,260 km? (Figure 3.2). It originates in the Swiss Alps and
flows through Germany, France, and the Netherlands. Most of Luxemburg and some
parts of Austria and Belgium drain into the Rhine river. Major tributaries include Neckar,
Main, Moselle, Lahn, Sieg, Lippe, and Ruhr. About 58 million inhabitants live in the river
basin, with 10.5 million in flood-prone areas (ICPR, 2013). The basin topography ranges
from the high alpine regions with elevations up to 2,500 masl to lowland floodplains
at the Lower Rhine. Major floods in the upstream parts of the basin are caused by
snowmelt combined with rain-on-snow, whereas the Middle and Lower Rhine floods
are dominated by long-lasting frontal rainfalls in winter and early spring. The average
discharge at the gauge Lobith at the border between Germany and the Netherlands is

2,200 m;, and the maximum observed discharge is 12,600 ’”73 in 1926 (Pinter et al., 2006).
In the past, flood management in the densely populated floodplains was focused on dike
reinforcement with a design discharge corresponding to return periods between 1/200 to
1/500 in Germany and 1/1250 to 1/2000 in the Netherlands (te Linde et al., 2011; VenW,
2007). Consequently, floods may occur in the German parts of the basin, while the Dutch
Rhine reaches will likely receive significantly reduced flood flows due to hydrodynamic
interactions (Apel et al., 2009).

3.4.2 Weather generator setup

The regional weather generator (RWG) is set up for a large region embracing entire
Germany and parts of the neighbouring countries and covering five major river basins:
Ems, Weser, Upper Danube, Elbe, and the Rhine. The setup is based on daily climate
observations for the period 1950-2003. The dataset contains six variables (precipitation,
minimum, average, and maximum temperature, relative humidity, and solar radiation)
at 528 locations, of which 465 are climate stations (Osterle et al., 2016) and 63 are grid
points for the French part of the Rhine basin from E-OBS gridded dataset (Haylock et al.,
2008). In this study, we use the RWG to generate 1,000 years of synthetic time series of
the six mentioned variables, which are then used to drive the hydrological model SWIM.
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FIGURE 3.2: Rhine basin upstream of Rees with the river network used in the 1D RIM model
component. Labelled gauges are used for calibration and validation of the 1D hydrodynamic
model.
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3.4.3 SWIM model setup and calibration

In this study, the Rhine catchment is divided into 936 sub-basins based on the digital
elevation data provided by the Federal Agency for Cartography and Geodesy in
Germany (BKG). Soil and land-use data are derived from the soil map for Germany (BUK
1000 N2.3), obtained from Bundesanstalt fiir Geowissenschaften und Rohstoffe (BGR)
and the European Soil Database map, obtained from the European Commission’s Land
Management and Natural Hazards unit and the CORINE (COoRdinated INformation
on the Environment) land cover map. SWIM is driven by meteorological data, either
observations or RWG-generated data. These sub-basins are grouped into eight sub-
regions (Supplement Figure ): Upper Rhine, Nahe, Neckar, Mosel, Lahn, Sieg, Lippe,
and Main & Rhine. Nine parameters are calibrated for each sub-region automatically
using the SCE-UA optimisation algorithm (Duan et al., 1994) (Supplement).

3.4.4 Setup and calibration of the RIM 1D model

RIM 1D (both RIM1.0 and RIM2.0) is set up for the river network represented in Figure
2. The network includes the main channel starting at the weir Iffezheim and major
tributaries with a catchment area of at least 500 km?. Overbank cross-section geometry
is derived from the 10x10m DEM with a vertical accuracy of +0.5-2 m provided by
the Federal Agency for Cartography and Geodesy in Germany (BKG). For the RIM2.0
model, the bankfull depth dpF is initially estimated using the power-law relationships
calibrated on more than 1200 surveyed cross-sections provided by the Federal Institute
of Hydrology (BfG) for the Rhine, Mosel, and Necker rivers (Supplement). However,
given the uncertainty related to these estimates and the uncertainties of the DEM, we
calibrate the estimated bankfull depth in the RIM 2.0 model by varying dpr in the
range 0.5 m to maximise NSE,, (Eq. 3.7) for the simulated discharge and water level
within the calibration period. Bankfull depth calibration was also previously applied by
Neal et al. (2012) and Wood et al. (2016). Additionally, the slope used to compute the
stage-discharge relation to convert the inflow for each sub-basin into the water level is
adjusted in the calibration process to maintain the water balance. The model is manually
calibrated based on the period 1996-2003, and the validation is carried out for the whole
period between 01-01-1950 and 30-12-1995 . Several metrics are considered to assess the
performance of the RIM model by comparing the simulated hydrograph by RIM and
SWIM models with observed flows at 34 gauging stations and observed water levels
at 19 gauges (Figure 3.2). The dike heights represented in the edge points of the cross-
section are estimated initially from the 10x10m DEM but are likely to be underestimated
due to smoothing effects. Dikes are designed for a specific return period flood (te Linde
et al., 2011; VenW, 2007). Since no consistent large-scale information on the dike heights
is presently available, a regionalised 200-year return period flow in combination with
Manning’s equation was used to estimate the elevation of the dikes along the Rhine main
channel, while a return period of 100-year was used for other tributaries, according to
te Linde et al. (2011). This step is carried out after the model is calibrated. The estimated
dike elevation is compared with the extracted dike levels from the DEM. The higher of
both values is finally taken as a dike crest elevation. The performance of the model in
the calibration and validation period is evaluated based on the modified Nash-Sutcliffe
efficiency NSE;, (Eq. 3.7), which emphasises peak flows.
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where Q,; is the observed discharge at time t, Qg;y, is the simulated discharge, and Q¢ is the mean of
observed discharges. Model performance regarding water levels is assessed by mean absolute error (MAE)
and mean bias error (MBE), which provide values in meters and thus better guidance on model performance
than NSE,;,.

3.4.5 Setup of the RIM 2D model

The RIM 2D hydrodynamic model is set up on the resampled DEM with a resolution of
100x100 m for the areas behind dikes. Floodplains between the dikes or elevated banks
are masked in the DEM and are not used for 2D computations. This significantly reduces
the computational load. A uniform Manning’s roughness value of 0.03 is assigned to
each raster cell, as suggested by Falter et al. (2013) and is not calibrated. The major flood
characteristics at this scale are found to be not very sensitive to the floodplain roughness
but rather determined by the 1D-2D model interface, and dike heights, i.e. how much
water enters the 2D model domain from the 1D model Bates et al. (2010). Furthermore, no
inundation due to dike overtopping occurred in the Rhine basin over the past simulated
period, which would allow model calibration.

3.4.6 Design of computational experiments

To investigate the effect of the hydrodynamic interactions, the RIM2.0 results based on
continuous routing are compared to those of RIM1.0. Daily synthetic meteorological
data of 1000 years from the regional weather generator are used to drive the SWIM
model in order to generate a set of events exceeding the dike design level. To account for
the fact that hydrodynamic models require calibration, which may compensate for the
methodological difference between both models, the calibration of both models is done
using the same procedure to make the comparison meaningful and to make sure that the
differences between the results of both models are due to the new conceptual changes.
To analyse the effect of hydrodynamic interactions, we compare simulated discharge
along the river network. Comparison of overtopping volume resulting in inundation
areas and damages elucidates the effect of interactions on hazard and risk. We trace the
effects along the channel profile and investigate the role of spatial scale on the effect of
hydrodynamic interactions.

3.5 Results and Discussion

3.5.1 Performance of SWIM, RIM1.0, and RIM2.0 flood routing

In this section, the performance of the hydrological model SWIM and both
hydrodynamic models (RIM1.0 and RIM2.0) is presented and discussed. SWIM and
RIM2.0 are evaluated in terms of the simulated discharge time series for the period
1950-2003, excluding the calibration period (1996-2003). Further, the simulation of water
level hydrographs for RIM 2.0 is evaluated. RIM1.0 output cannot be directly compared
to SWIM and RIM2.0 output since it routes only overbank flow (flow exceeding
bankfull depth) and thus does not produce continuous hydrographs. For this reason,
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FIGURE 3.3: Performance of SWIM a) and RIM2.0 b) (NSE,; values) with respect to observed
discharges.

the performance of RIM1.0 is checked visually at the gauge locations, and the ability to
reproduce peak flows and water levels is assessed.

Figure 3.3a shows the performance of SWIM over the entire catchment in terms
of the NSE,;, values. SWIM performance is overall very good, with values ranging
from about 0.9 at the gauge Schermbeck (Lower Rhine) down to 0.51 at the gauge
Dhrontalsperre on the Mosel river. The latter is likely influenced by the reservoir
operation. Further, the performance of RIM2.0 is compared to observed discharge
(Figure 3.3b). Generally, RIM2.0 has a good performance all over the catchment
compared to observed hydrographs with NSE, values ranging from 0.39 to 0.84.
However, the performance of RIM2.0 deteriorates compared to SWIM in the downstream
parts. We attribute this to the representation of the bankfull depth in the lowland
parts of the catchment. Furthermore, floodplains between dikes at the Lower Rhine
become much wider compared to upstream parts and are less well represented by the
1D simplified cross-sections. Further improvements in the representation of the cross-
section geometry of the downstream reaches are required in the future.

In the Mosel river (Figure 3.2), RIM2.0 performs comparably poor to SWIM with NSE,,
around 0.5, as RIM2.0 is not intended to compensate for errors of preceding modules in
the model chain. This is likely a consequence of substantial errors in the precipitation
input in the French part of the basin, where coarse resolution gridded data had to
be used. In the Ruhr tributary (Figure 3.2), the performance of SWIM is acceptable
with NSE,, between 0.6 and 0.8, whereas RIM2.0 drops below 0.55, likely due to
misestimation of river conveyance in this heavily trained reach.

The inspection of the hydrographs for selected flood events, including a major flood in
1993, reveals a very similar performance of RIM1.0 and RIM2.0 at gauges Steinbach,
Lauffen, Leun and Chochem, while SWIM and RIM1.0 slightly better match the
observed peak flows compared to RIM2.0 at Cologne and Duesseldorf (Supplement
Figure 3.16). All three models show comparable performance in relation to annual
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FIGURE 3.4: Performance of RIM2.0 against observed water level in the validation period.
MAE and MBE are calculated as measured minus modelled values. Negative MBE indicates
overestimation, and positive indicates underestimation.

maximum observed flows at most of the selected gauges (Supplement Figure 3.17).
However, RIM2.0 overestimates some high flow peaks at gauge Lauffen in the Neckar
basin and underestimates high flow peaks in the Lower Rhine. The latter is likely
due to an underestimation of bankfull depth, which results in more water conveyed
above bankfull depth and stronger attenuated peaks. For water level hydrographs,
MAE ranges between 0.83 m at gauge Cologne to values below 0.2 m in the Main and
Neckar tributaries (Figure 3.4). While the MBE ranges between 0.33 m (overestimation)
at Lauffen to 0.63 m (underestimation) at Cologne.

Further, we evaluate the performance of RIM1.0 and RIM2.0 with regards to water level
simulation at selected gauges in a period in December 1993 — March 1994, including
a major winter flood (Supplement Figure 3.18), and compare the simulated water
levels to observations for annual maximum events (Supplement Figure 3.19). RIM2.0
outperforms RIM1.0 in the upstream parts of the Rhine basin and the tributaries.
Both models underestimate observed maximum water levels of high flow events at
the Lower Rhine, whereas, at Cologne, RIM2.0 underestimation is more severe than
in RIM1.0. A more detailed performance evaluation of all models is provided in the
Supplement. Overall, the models perform reasonably well considering the scale of
the basin, the limited information about the cross-section geometry and the degree of
anthropogenic influences on river geometry and flow conveyance. The performance
of large-scale hydrodynamic models for river networks with uncertain bathymetry
reported in the literature is comparable to the one achieved in our study. For instance,
for the Amazon River and its tributaries, (de Paiva et al., 2013) achieved comparable
discharge simulation performance with a combined Muskingum-Cunge and a full Saint-
Venant hydrodynamic model with NSE values mostly between 0.6 and 0.9 but also
dropping to 0.2-0.6 for some reaches. Most of the reaches exhibited a bias in the
simulated water depths between 3 and 15 m, which is by far larger than in our study
being in the range of +0.35 to -0.65 m. Impact of hydrodynamic interactions on flood
hazard.
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In this section, we analyse the impact of hydrodynamic interactions, which result from
inundation and storage effects in the river network, on flood hazard characteristics.
First, we compare the overtopping volume over the dike crests and total inundation
area in the Rhine basin and present the results for the first 100 years of the 1000-year
simulation period for the sake of brevity (Figure 3.5). The tendency is similar for the
remaining period. Both models show the same major events. Besides, RIM1.0 simulates
a large number of small events with small inundation areas. On the contrary, RIM2.0
simulates overtopping and inundation for only 5 events in the selected 100-year period.
Taking into account the protection level of dikes in the Rhine basin, the overtopping
frequency of RIM2.0 appears much more realistic, suggesting that the representation of
cross-section geometry, dike height, and water levels is closer to reality in RIM2.0. For the
simulated major flood events, the overtopping flow and inundation areas from RIM1.0
are considerably larger than simulated by RIM2.0.
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FIGURE 3.5: Overtopping volume A) and inundation area B) simulated by RIM1.0 and RIM2.0 for
a 100-year synthetic simulation period. Years in synthetic simulations are denoted with “X".

Figure 3.6 compares inundation areas for the most severe event Nov-X084, i.e. the event
with the highest overtopping volume and inundation area (Figure 3.5). The inundation
areas tend to occur in the same river reaches, however, RIM1.0 inundations are larger
compared to RIM2.0. We observe this behaviour for all major events in Figure 5. Not only
inundation areas but also inundation depths are overestimated by RIM1.0, as shown in
the histograms of inundation depth for the regions around Trier (Mosel), Leverkusen
(Rhine), and Mainz/ Wiesbaden (Main). These results suggest that the hydrodynamic
interactions, which are insufficiently represented in RIM1.0, considerably reduce water
levels downstream. This is further illustrated by analysing the longitudinal profiles of
maximum water level and overtopping volume for the river Moselle and the Rhine
during the Nov X084 and April X068 events (Figure 3.7). The profiles start at the
upstream node in the Moselle river and continue along the Middle and Lower Rhine.
We select this course since inundation mainly occurs along these tributaries in these two
events.

Figure shows that the difference in maximum water levels between RIM1.0 and
RIM2.0 fluctuates around zero at the upstream part of Mosel and is controlled by
overtopping in both models. The maximum difference happens upstream of the
confluence with the Rhine river at Trier (see Figure 3.2), which results in the highest
overtopping (spatially during both events), and consequently highest difference in
inundation depth and extent (Figure 3.60) between both models. The overtopping
frequency and volume are noticeably higher in RIM1.0 at the downstream reaches
compared to RIM2.0 for both events.
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The maximum water levels in RIM1.0 are much less sensitive to overtopping compared
to RIM2.0. In consequence, RIM1.0 produces more overtopping volume along the entire
reach. We explain this pattern by the hydrodynamic interactions. RIM1.0 considers
hydrodynamic interactions only within individual sub-basins, i.e., dike overtopping
and inundation cause discharge and water level reductions only within the sub-basin
where they occur. This storage effect is not translated to the sub-basin downstream.
The discharge boundary condition in the subsequent sub-basin is updated using
SWIM output, which is not aware of the overtoppings upstream. Hence, the total
floodwater volume in the river system is overestimated, causing stronger overtopping
and larger inundation areas in RIM1.0. To some extent, this effect also occurs in the
mosaicked flood mapping approach, in which upstream boundary conditions of piece-
wise hydrodynamic models are updated from the local regionalised flood frequency
curves (e.g. Quinn et al., 2019). There may be cases where the streamflow observations
comprise events with upstream inundations and, thus, downstream flow reductions,
which then may leave a trace in the flood frequency curve. However, given the length
of measured discharge series and the rarity of dike overtopping and inundations
along embanked rivers, the degree to which the effect of hydrodynamic interactions is
contained in the results of the extreme value statistics is limited.

3.5.2 Impact of hydrodynamic interactions on damage and risk

In this section, we investigate how decisive hydrodynamic interactions are for flood
damage and risk estimates. For this, we integrate the risk from all flood events simulated
in the 1000-year period of synthetic simulations. The comparison of estimated economic
risk from both models (Figure 3.8) indicates that the chain, including RIM2.0, generally
simulates less damage. This corresponds to the overall smaller inundation areas and
depths discussed in the previous section. We attribute this difference in particular to
the effect of hydrodynamic interactions. We analyse the overall simulated damages and
flood risk in the Rhine basin and discuss the results in view of previous studies.

Simulated absolute damage numbers for the residential, commercial, and agricultural
sectors are in reasonable agreement with actual reported losses, though a direct
comparison between single observed and simulated events is not expedient. For
instance, VAR, i.e., the 100-year total loss amounts to EUR 1.94 billion in RIM2.0
compared to EUR 3.14 billion in RIM1.0, while the reported loss of the 1993 event (about
100-year flood at Cologne) in the German Rhine was DM 1.5 billion (Engel, 1997), which
corresponds to roughly EUR 1.2 billion today. The estimated EAD for the two model
variants (EUR 0.16 billion by RIM1.0 and EUR 0.08 billion by RIM2.0) is considerably
lower than estimated by te Linde et al. (2011) (EUR 0.79 billion for the German Rhine).
This difference likely originates from the differences in the approaches to compute flood
hazard, asset values and different damage models. First, the approach of te Linde et al.
(2011) is based on the homogeneous assumption of an “extreme” inundation scenario
provided by ICPR (2001) without an associated return period. Probabilities of inundation
and losses in that study were retrospectively assigned by using the nominal protection
levels in the respective parts of the Rhine reach. Hence, EAD was estimated as summed
probability-weighted losses corresponding to the return period of dike overtopping, i.e.,
dike design level. Damage estimations corresponding to a specific high return period
under homogenous assumptions are found to be largely overestimated (Metin et al.,
2020). Second, the exposure values used in the Damage Scanner model in te Linde et al.
(2011) include infrastructure and other land-use types not considered in our approach.
Damage Scanner is found to overestimate loss values by more than 3 times compared to
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the FLEMO damage model (Jongman et al., 2012). Finally, damage calculated by te Linde
etal. (2011) comprises a share of, on average, 5% indirect damage, which is not accounted
for in our study:.
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FIGURE 3.8: Risk per economic sector derived from both model chains, the VAR and TVAR and
the EAD values are displayed for both models in blue (RIM1.0) and red (RIM2.0. The agriculture
loss is given in million Euro in contrast to other sectors.

The private and commercial sectors contribute equally to the overall financial risk in
our simulation. However, the loss in the agricultural sector differs largely between both
models due to the difference in the inundation extent, it only makes a small fraction
in the overall loss (Figure 3.8). This result is expected for the highly industrialised
Rhine catchment, particularly the Lower Rhine. The difference in TVAR is larger than
the difference in VAR, indicating that the models show less agreement in the upper
tail. We find that events above the 100-year return period contribute significantly to
the difference in risk curves between the RIM1.0 and RIM2.0 model chains. Different
protection levels around 100 and 200-year return periods can be observed in the loss
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curves. A steep growth of the curve is visible at these thresholds, depending on whether
damages occur along the main course with the higher protection standard (~200 years)
or in the tributaries, where the protection standard is likely lower (~100 years). OEP
considers the most severe event per year. However, there is a possibility of having
multiple flood events in one year, which can then be reflected in the risk curves by
the Aggregated Exceedance Probability (AEP). As AEP and OEP are mostly identical
(not shown), which means that both models, RIM1.0 and RIM2.0, seldom encounter two
major events per year, only OEP values are presented.

To analyse the impact of hydrodynamic interactions on flood damage and risk, we
subdivide the river network into different segments based on the location of major cities
and confluences (Figure 3.9). The results of both RIM1.0 and RIM2.0 are aggregated
and used to derive the risk curves for each segment. At the upstream segments 1,
7, and partially 10, the risk curves by RIM2.0 are higher than the RIM1.0 curves,
which indicates higher losses produced by RIM2.0. Further downstream, the risk curves
converge (segments 2 and 3). At the lower part of the Rhine (segments 4, 5 and 6),
the modelled risk by RIM1.0 consistently exceeds the estimations by RIM2.0. In these
segments with extended floodplains and high exposure, there is a strong potential for
widespread inundation and high losses. In segment 9 i.e. Lippe tributary, the RIM2.0
calibration results with respect to discharge are poor (Figure 3.3), presumably due to
anthropogenic effects on river geometry and discharge in this strongly affected reach.
Moreover, water levels were not available for model calibration, which affects water
level estimations. Hence, significant differences resulted between RIM1.0 and RIM2.0
in this reach that explain the resulting risk curves. The discharge contribution of this
segment to the main Rhine channel is in the order of a few percent, so the effect on the
risk downstream is expected to be small.

Figure compares the spatial distribution of inundation areas and damages for
two large events (Nov-X084 and April-X068, see Figure 3.5). The inundation areas and
damages are aggregated for the sub-areas shown in Figure . To present the results
on a proper scale, the hydrological sub-basins of SWIM are aggregated to larger areas.
The total damage of the Nov-X084 event is 7.9 billion, estimated from RIM1.0 and 5.6
billion from RIM2.0, while the April-X068 event simulation results in 3.2 billion and
1.0 billion for RIM1.0 and RIM2.0, respectively. Locating these numbers on the risk
curves would result in return periods of 200 and 166 years for the Nov-X084 event
simulated by RIM1.0 and RIM2.0, respectively, and 100 and 66 years for the April-
X068 event by RIM1.0 and RIM2.0, respectively. The shading of the sub-area indicates
the absolute inundation area/damage. Nov-X084 event originates in the Neckar, Main,
and Mosel tributaries, whereas April-X068 event strikes Main and Mosel (see Figure
for orientation), and the Lower Rhine is affected by both floods. For both events,
inundation areas and damage simulated by RIM1.0 are often similar at upstream sub-
areas but clearly dominate the Lower Rhine compared to the RIM2.0 results. The Lower
Rhine is hardly affected by Event 2 in the RIM2.0 model. We attribute the difference
in inundation/damage patterns between both models mainly to the difference in the
routing scheme and, consequently, to the consideration of hydrodynamic interactions.
However, underestimation of flow and water level in RIM2.0 compared to RIM1.0 due to
differences in cross-section geometry and parameterization may result in less inundation
in RIM2.0 and thus represents a limitation for the achieved results. The higher sensitivity
of RIM2.0 simulations to dike overtopping due to the consideration of hydrodynamic
interactions becomes pronounced in the Lower Rhine, where several overtopping occur
during these events. Consequently, less inundation and damage occur during both
events at the Lower Rhine, when hydrodynamic interactions are accounted for.



52

Chapter 3. On the role of floodplain storage and hydrodynamic interactions for flood risk estimation

Total Risk Segment 5 Total Risk Segment 6
10.0
- RIM1.0 - RIM1.0
@ 751 Rm20 Gl = AM20
8 5
g 5.0 E-
2.
25 3
0.0 L 04
Total Risk Segment 4 o0 1055 10 7018 192 1025 203 w00 1095 197 1078 107 1025 130 Total Risk Segment 9
OEP OEP
= RIM1.0 - 064 = RMID
} X & - RIMZO
504+
. go.z-
0.04
10° 10°% 10" 107" ® 107 107% 107
OEP OEP
Total Risk Segment 3 Total Risk Segment 8
0.3
0.4 = RIMILO - RIM1.0
& = RIMZO ool RIMZ.0
Sos s
E w
Soa o1
0.0 0.04
10[} 10.05 ‘D! 10.‘5 102 10.25 10 3 10[1 10.0! 10' ‘O.IS 10—2 ID.}s 10!
QEP
Total Risk Segment 2 ¥ Kocher Total Risk Segment 7
; 8
- RIM1O h i - RIMLO
104 = RIM20 - B - RIM20
()
E‘ c
a, 2.4
w
§ 0.54 §
Necker = 21
0.04 Ol .
10° 10°% 10° 105 102 102° 10° Total Risk Segment 1 Total Risk Segment 10 10° 10%% 107 107% 40 107 107
OEP 12 OEP
1.004
- RIMILO
- RIMZO
@ 0.75+
c
o
& 0.504
0.254
0.004 . | P |
10° 10°% 10" 107 % 107 107 % 10 10° 10°% 107 10" 107 107 % 107
QEP OEP

FIGURE 3.9: Risk curves derived from RIM1.0 and RIM2.0 for river basin segments at different
locations across the main Rhine and the tributaries.
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FIGURE 3.10: Comparison of inundation area and damage between RIM1.0 and RIM2.0 for
two selected events in the synthetic series. The shaded colour in the background refers to the
maximum inundation area of both models in the left panels and the maximum damage of both
models in the right panels for the same sub-area. The bars indicate the share (%) of each model
from the maximum value of the sub-area, i.e., one of the two bars refers to 100% in each sub-area.
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3.5.3 Computational time performance

Besides considering hydrodynamic interactions and a more plausible representation of
dike overtopping events leading to inundation, we achieve a considerable reduction of
the computational time with RIM2.0. The model runtime for the 1000-year simulation
run was nearly halved (from about 60 to 30 days on the GPU-cluster (NVIDIA Tesla
K80 with 24 Gigabyte of GDDR5 RAM). The computational load in RIM2.0 caused by
the 1D component increased nearly 20-fold compared to RIM1.0. 1D routing in RIM2.0
runs continuously for all flows, whereas RIM1.0 routes only flow exceeding the 2-year
discharge. This happens every second year on average. However, due to the lack of
hydrodynamic interactions in RIM1.0, the overall larger inundation computations result
in a much longer 2D computational time (Figure ).

3.6 Conclusions

In this work, we analyse the effects of hydrodynamic interactions on flood hazard
and risk estimates. To this end, two versions of the 1D-2D coupled hydrodynamic
diffusive wave models driven by a weather generator and a hydrological catchment
model were compared— RIM2.0 considering hydrodynamic interactions, and RIM1.0
considering interactions only within individual sub-basins or river reaches, but not
beyond sub-basin boundaries. The analysis of peak water levels, overtopping volumes,
inundation areas and depths reveals that the piece-wise routing approach is largely
insensitive to overtopping. Unconsidered hydrodynamic interactions and updated
upstream boundary conditions at each sub-basin from the hydrological model largely
contribute to this effect. The hydrological model is unaware of upstream inundations
and provides hydrologically routed flow, including lateral input as if no upstream
overtopping has occurred. In this way, the overall mass balance is violated in the piece-
wise routing approach and leads to larger inundation areas, depths and damages. At
some reaches this overestimation is however partly caused by differences in simulated
discharges between two models resulting from calibration and uncertainties in cross-
section geometry. We conclude that considerable risk overestimation can be expected
when using mosaicking of piece-wise hydrodynamic simulations driven by hydrological
models or extreme value statistics as an upstream boundary condition. This approach
is still very common for fluvial flood risk assessments. Even if extreme value statistics
accounts for multisite spatial dependence structure, hydrodynamic interactions are only
accounted for along the reach considered in the hydrodynamic model. Our results for
the Rhine basin suggest that interaction aware model produces smaller inundation areas
and hence requires half of the computational time for the 2D component compared to
the piece-wise approach. The overall risk estimates, i.e. the EAD, derived by the RIM2.0
model version is just about half the value provided by RIM1.0. This highlights the
practical relevance of the continuous routing considering hydrodynamic interactions for
large-scale flood risk analysis.

Acknowledgements: We would like to acknowledge funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement no. 676027. This work contributes to the
DFG Research Unit FOR 2416 “Space-Time Dynamics of Extreme Floods (SPATE)”.
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3.7 Supplement

3.7.1 Calibration of the hydrological model SWIM

SWIM has a set of nine most sensitive parameters which need to be estimated.
Two parameters are related to the channel routing, three parameters to snowfall and
snowmelt processes, two parameters control the subsurface flow contribution to the
streamflow, a correction parameter for potential evaporation, and a correction parameter
for saturated conductivity. SWIM is calibrated in two phases. In the first phase, we
calibrate and validate the model for all sub-regions except Main & Rhine independently
(Figure )- In the second phase, the Main & Rhine sub-region is calibrated and
validated. It uses the input from other already calibrated sub-regions as tributary inflow.
Observed daily streamflow at 79 selected stations is used to calibrate the model based
on the modified Nash-Sutcliffe Efficiency NSE,, (Eq. 3.7). The period between 01-01-1981
and 31-12-1989 is used for the calibration, while the period between 01-01-1950 and 03-
12-2003 is considered for validation (excluding the calibration period).

3.7.2 Description of the RIM1.0 and RIM2.0 hydrodynamic model discretiza-
tion and cross-section geometry

Discretization and coupling to the hydrological model SWIM

The discretization of depends mainly on the river topography and SWIM modelsub-
basins, Each cross-section in the 1D model is linked to a specific SWIM sub-basin,
whereby several cross-sections can be linked to one sub-basin. There can also be sub-
basins, which contain no cross-sections, i.e., no river channels are discretized within
these sub-basins (Figure ). In the latter case, the flow between sub-basins is routed
by SWIM using the Muskingum routing method. For RIM1.0, at the upstream point of
each sub-basin, the 2-year return perion discharge is first subtracted from the SWIM
flow hydrographs (explicitly representing the bankfull depth), then used as a boundary
conditions for the RIM 1D component. For RIM2.0 the flow hydrographs are used as
upstream boundary conditions at the most upstream nodes of the discretized river
network. Otherwise, the sub-basin discharge is distributed as lateral inflow at every time
step among the cross-sections linked to a specific sub-basin.

River cross-section data
Owverbank cross-section area

The 1D hydrodynamic model (both RIM1.0 and RIM2.0) requires river cross-section data
to describe the river channel geometry. In our approach, the entire river channel and
adjacent overbank areas between the dikes or elevated banks are characterized by the
river cross-sections and represented in the 1D model domain. Surveyed cross-sections
are often not available for large river networks. Furthermore, they usually do not cover
the entire floodplain between dikes as represented in the RIM approach. Therefore, RIM
relies on cross-sections derived from a digital elevation model. However, the bankfull
depth, i.e. river bathymetry below the water level, is not represented in the DEM. The
cross-sections for the RIM 1.0 are directly extracted from the DEM. For the RIM 2.0
model, we additionally estimate the bankfull depth using three options based on power-
law functions that are detailed below.

First, the overbank component of the river cross-sections, including dike location and
elevation along the river network, is derived from the DEM perpendicular to the flow
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FIGURE 3.11: SWIM model setup with eight calibration sub-regions (each sharing the same
parameter values). The river network shown is the result of the catchment delineation and is
used in SWIM. It differs from the river network used in RIM (Figure 3.2).
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FIGURE 3.12: Difference between the piece-wise routing (A) and continuous routing (B)

approaches considered in RIM1.0 and RIM2.0, respectively. Computational nodes are imaginary

points at which discharge and water levels are computed. The calculation at points with the

notation “Flow (#)” refers to the addition of the upstream flow, while calculation with the notation
“*#” refers to routing using the diffusive wave approximation

direction, with the GIS integrated tool HEC-GeoRas. Additional information on dike
locations and channel width can be taken from the digital basic landscape model
(Base DLM). Subsequently, cross-sections were simplified into 6-point cross-sections by
retaining the cross-sectional area (Figure 3.13) using an optimization procedure, i.e. a
point is varied vertically on each floodplain side until the optimized vertical location
of those points corresponds to the minimal difference between the resulting area and
original cross-section area (Figure 3.13). Typically, low-resolution DEMs do not well
resolve dike heights and tend to underestimate them. Therefore, dike height derived
from the DEM is further calibrated based on a design flow return period. The highest of
both estimates is adopted as a crest height in the cross-sections.

A) RIM 1.0 B) RIM 2.0

<+———» Width (bf)
6 point cross-section 8 point-cross section

FIGURE 3.13: Difference between cross-section shapes considered in both model versions RIM1.0

(A) and RIM2.0 (B). The overbank area is represented by a 6-point cross-section derived from the

10x10 m DEM for both models. In RIM1.0, the bankfull area is represented by 2- year flow, while
in RIM2.0, it is derived statistically from hydraulic geometry relationships
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Cross-section bankfull depth in RIM2.0

The bankfull depth for all cross-sections in the RIM2.0 model is derived using hydraulic
geometry relationships (Leopold and Maddock, 1953). Three different approaches to
derive bankfull depth based on the power-law functions (Eq. 3.5, and ) can be
used to estimate the bankfull depth at each derived cross-section from the DEM. The
first one relates bankfull depth to the 2-year discharge.

dgr = aHQ} (3.8)
Wpr = cHQS (3.9)

where Wpr is the bankfull width (m), dpr the mean bankfull depth (1), and HQ; the 2-year discharge ("%3).

Based on Rawlins (1995), flows corresponding to 1-2.5 years are representative to
bankfull discharge for stable natural channels; therefore, the two year return period
discharge (HQ;) is calculated for all locations with observed discharge by fitting the
Gumbel distribution to the annual maximum discharge series at the observational
gauges. Since the value of HQ> is required at all cross-section locations along the river,
not only at gauges, we fit the power-law curve HQ, = a AP, where A is the upstream
drainage area (m?), to the data via regression and used this curve to estimate HQ
at all cross-sections. To estimate the target variable dpr, coefficients a and b need to
be approximated. Using Manning’s equation, we obtain the bankfull depth (dpr). The
bankfull width Wpr and slope S, are estimated from the DEM. Based on the estimated
dpr with the very wide cross-sections, the a and b parameters in Eq. 3.5 are obtained by
the regression analysis. Using Eq. 3.8, the bankfull depths can directly be derived.

Furthermore, the relationship between channel width and 2-year discharge (Eq. 3.9) was
derived through regression analysis to get the parameters c and d; this relationship is not
used to calculate the bankfull width as it is extracted from the DEM for all cross-sections,
therefore the role of the relationship in Eq. 3.9 is to obtain the parameters c and d and
use them in Eq. , and By multiplying Eq. and Eq. 3.9, another relationship
based on two predictors WBF and HQ» can be obtained (Eq. ). Then the third option
to derive dpr is to substitute HQ» from Eq. into Eq. 3.9, resulting in Eq.

oc
dpr = WTFHQW (3.10)
b
d
dpr = o <WCBF> (3.11)

Derived bankfull depths using three different approaches are assessed against the
bankfull depths of the surveyed cross-sections at about 1100 locations at the Rhine,
Mosel, and Neckar using mean absolute error (MAE) and the mean bias error (MBE).
Different Manning’s roughness values between 0.025 and 0.05 are considered to estimate
the value of dpr, but the differences are found insignificant. Ultimately, the uniform value
of n = 0.03 is used across the river network. Considering different options to derive
bankfull depth, Eq. is found to deliver the best fit with the overall MAE of 1.01
m and MBE of 0.12 m (Figure ). It used measured bankfull width from the DEM as
a single predictor. The error in the calculated bankfull depth in the Rhine main channel
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FIGURE 3.14: Comparison of estimated and measured bankfull depth at the locations of the
surveyed cross-sections, MAE, and MBE is calculated as measures value-calculated value.

(MAE of 1.02 and MBE of -0.37) differs slightly from the Mosel (MAE of 1.03 and MBE
of 0.46) and Neckar (MAE of 0.99 and MBE of 0.63) tributaries.

Wyp 0391
=0. A2
dpr = 0.6354 <o.7093> (3.12)
Figure shows considerable variability in the estimation of bankfull depth used in

RIM2.0 for single cross-sections compared to observations. This highlights the need
to calibrate the model by adapting the bankfull depth to match the water level and
discharge hydrographs. In order to analyze the effect the cross-section estimation
method has on the calculation of bankfull capacity and thus on flow and water level, we
compare the bankfull capacity of the cross-sections in RIM1.0 and RIM2.0 at the locations
of the gauging stations with the estimates of the 2-year flood based on the gauge records
(Figure ). The bankfull discharge (cut-off value) in RIM1.0 is estimated for each
sub-basin based on the simulated flows with the SWIM hydrological model. For the
purpose of this comparison, the bankfull discharge of RIM2.0 cross-sections is estimated
with Manning’s equation. The basin average bankfull discharge is then compared to
the respective gauge-based estimations. Figure shows the difference between the
observations and both model estimations. At most locations, the bankfull discharge
in the RIM2.0 model (red) marginally differs from the observed 2-year discharge,
which indicates a sound estimation of the bankfull-depth and conveyance. Only in
the upstream parts of the Neckar and the Nahe tributary, the bankfull conveyance is
considerably overestimated. The RIM1.0 tends to slightly overestimate the observed 2-
year discharge in the downstream part of the Rhine and in the main tributary.
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FIGURE 3.15: Comparison between the 2-year return period discharge derived from gauge

observations (grey column), cut-off value (HQ>) in RIM1.0 (blue column), and estimated bankfull

cross-section capacity in RIM2.0 (red column) in ’"73 The bar height is related to the maximum
value at each location. Bars at one location cannot be compared with those at other locations.
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3.7.3 Performance of SWIM, RIM1.0, and RIM2.0 flood routing
Performance of discharge simulation

Figure presents a comparison of a few selected flood events exceeding 2-year
bankfull discharge in the observation period at 6 gauges (for the locations of gauges
see Figure 3.2) in the Rhine basin, including the comparison with RIM1.0, where the
cut-off value is represented by the dotted horizontal blue line. These peaks belong to
a major flood event which hit the Rhine catchment in December 1993 - January 1994.
These gauges are selected to cover the main channel and major tributaries, including
potential risk hot spots at the Lower Rhine (Cologne, Duesseldorf). The inspection of the
hydrographs in Figure reveals a very close performance of both model versions at
the Steinbach, Lauffen, and Leun and Cochem gauges, while the performance at Cologne
and Duesseldorf slightly differs, where SWIM and RIM1.0 better match the observed
peak flows.

The comparison of the modelled and observed hydrographs reveals that the
performance of the RIM models with respect to observations is affected by the input
from SWIM. For example, at gauge Leun, SWIM underestimates the peak flows, and
this error inherently appears in the RIM results. In general, the comparison reveals
that RIM2.0 mostly captures the peak magnitudes, but shows a slight shift in phase
of the hydrographs at nearly all gauges. The peaks come earlier and appear to be less
attenuated than in other models, and this explains the poorer performance compared to
SWIM routing. The performance of RIM2.0 compared to observations tends to be worse
compared to the performance of the SWIM routing. This might be due to the fact that
the calibration of the cross-section bankfull depth changes the bed slope between cross-
sections. This controls the water levels and, consequently, discharge calculations. Hence,
a certain trade-off is expected between the performance with respect to the water levels
and discharge hydrographs. In other words, the performance with respect to discharge
can deteriorate compared to SWIM in order to improve the simulation of water levels.

Figure presents a comparison between the maximum annual discharges in the
validation period modelled by RIM1.0, RIM2.0, and SWIM vs observed peak flow of
the corresponding flood events. It can be noticed that RIM1.0 does not simulate flows
below the HQ, threshold. Therefore, the number of simulated peaks by the RIM1.0
is roughly half of those delivered by the other two models. The points for all models
are scattered along the 45-degree line at most of the selected gauges, which indicates
an overall similar model performance with regards to peak flows. At gauge Steinbach,
RIM1.0, RIM2.0, and SWIM perform very similar but slightly overestimate the peaks.
At Lauffen, RIM2.0 overestimates a few high flow peaks. At gauges Duesseldorf and

Cologne, RIM2.0 slightly underestimates the peaks above 8000 ’”TS, whereas RIM1.0 and
SWIM show very good performance. As discussed above, the representation of the cross-
sectional geometry in the lowland river reaches might be inadequate and requires further
improvement in the future.

Evaluation of RIM1.0 and RIM2.0 with regards to water levels To benchmark the
performance of RIM1.0 and RIM2.0, we analyze the water level simulations at 6 selected
gauges with available water level observations for the major flood event in 1993
analogously to the analysis of discharge hydrographs (Figure )- RIM1.0 and RIM2.0
are mostly consistent in the simulation of water level dynamics and match the peak
levels similarly well (or poor). As for discharge, RIM2.0 water level hydrographs are
slightly shifted in time compared to RIM 1.0 and observed hydrographs, though peak
levels are met mostly well. The constant water level in RIM 1.0 (horizontal line) is
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FIGURE 3.16: Comparison of discharge hydrographs between RIM1.0, RIM2.0, SWIM, and

observations at selected gauges. The selected dates show the highest peak of the time series in

the observational period. The horizontal blue line represents the cut off value (HQ;) in RIM1.0
and is not simulated.
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FIGURE 3.17: Comparison of the maximum annual modelled and observed discharge peaks in
the historical period from 1950 till 2003.
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FIGURE 3.18: Comparison of simulated water levels between RIM1.0 and RIM2.0 for selected
historical flood events in December 1993 — January 1994 at 6 selected gauges.

the water level corresponding to the cut off value (HQ>). At the gauge station Speyer,
water levels simulated by RIM2.0 show that both high and low flows are well presented
in addition to the timing of the flood wave, with 0.48 m MAE and -0.05 m MBE
(overestimation). In contrast, RIM1.0 misses the event, which indicates a problem in
RIM1.0 for estimation bankfull capacity. At the gauge Andernach, both models predict
a slightly earlier peak compared to the observed data, but RIM2.0 matches the observed
peak water levels much better than RIM1.0 At gages Cologne and Rees, RIM2.0 simulates
slightly smaller water levels than RIM1.0 for some peaks, whereas other peaks are well
attained by RIM2.0 and are entirely missed by the RIM1.0 model. At the gauge Cochem,
RIM2.0 underestimates the peaks with MBE of 0.19 and MAE of 0.46. The degradation
of the water level performance at Cochem indicates a problem in the bankfull depth
estimation at the cross-sections in this reach and should be revised in future. The
gauge Steinbach in the middle of the river Main shows that RIM1.0 underestimates
smaller events, while RIM2.0 manages to capture the observed peaks and delivers good
performance with MBE of -0.08 m and MAE of 0.28 m.
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Figure 3.19 presents a comparison between the water levels modelled by RIM1.0 and
RIM2.0 for flood events corresponding to events with the maximum annual observed
water level peaks. Similar to the simulated discharge by RIM1.0 and RIM2.0, the
simulated water levels by both models have an overall similar model performance but
are underestimated at most stations, as shown in Figure 3.19. RIM2.0 seems to have
problems replicating the peak water levels at Cologne. Nonetheless, the performance

of both models is very similar at Duesseldorf (not shown). This highlights the effect of

the cross-sections on water levels estimates and stresses the importance of the robust
estimation of the river profile geometry.
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Chapter 4

A data-mining approach towards
damage modelling for El Niiio events
in Peru

4,1 Abstract

Compound natural hazards like EI Nifio events cause high damage to society, which
to manage requires reliable risk assessments. Damage modelling is a prerequisite for
quantitative risk estimations, yet many procedures still rely on expert knowledge, and
empirical studies investigating damage from compound natural hazards hardly exist.
A nationwide building survey in Peru after the El Nifio event 2017 — which caused
intense rainfall, ponding water, flash floods and landslides — enables us to apply data-
mining methods for statistical groundwork, using explanatory features generated from
remote sensing products and open data. We separate regions of different dominant
characteristics through unsupervised clustering, and investigate feature importance
rankings for classifying damage via supervised machine learning. Besides the expected
effect of precipitation, the classification algorithms select the topographic wetness index
as most important feature, especially in low elevation areas. The slope length and
steepness factor ranks high for mountains and canyons. Partial dependence plots further
hint at amplified vulnerability in rural areas. An example of an empirical damage
probability map, developed with a random forest model, is provided to demonstrate
the technical feasibility.

4.2 Introduction

El Nifio events are compound events, comprising torrential rainfall, fluvial and flash
floods, mudslides, and other processes difficult to disentangle. Relevant for society is the
total damage resulting from consecutive or cascading hazards during several months.
Modelling studies and measurements still do not provide a clear image about the effect
of climate change on the EIl Nifio Southern Oscillation, but the general expectation is
that more extreme states will occur more frequently (Cai et al., 2015, 2018; Freund et al.,
2019). For this reason, a stronger shift from the “emergency response”-mindset towards
integrated disaster risk management would be advantageous for Latin America. This
shift requires risk analyses including damage models for cost-benefit analysis, and for
the planning of needed relief aid. However, to the best of our knowledge, damage
models for such compound events are still non-existent, and even statistical analyses
of damage processes are scarce (compare Gerl et al., 2016).
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Methodologies in damage modelling range from very coarse national average curves
with focus on economic damage (Jongman et al., 2012) to detailed local engineering
approaches with focus on structural failure of buildings (Risi et al., 2013; Jalayer et al.,
2016). Engineers have defined structural damage grades of buildings for various kinds
of hazards, e.g., floods (Ester et al., 1996), tsunamis (Suppasri et al., 2012), or debris
(Jenkins et al., 2015). These damage grades usually imply certain types of observable
characteristics, like cracks in the wall or dented windows. Previous attempts to predict
structural damage from empirical surveys had limited explanatory power due to the low
number of samples used, especially for buildings with high damage grades (Laudan
et al., 2017). For Peru, the most comprehensive published investigations were made
about flash floods in Arequipa (Thouret et al., 2013, 2014; Ettinger et al., 2016). Although
the cited studies in Arequipa included environmental covariates like distance to the
channel and soil impermeability, most other studies typically use a single intensity
metric, like water depth for floods, which is not straight-forward for compound events
like EI Nifio situations.

Topographic indicators, on the other hand, have been successfully used to predict flood
and landslide hazard, (e.g. Cao et al., 2016; Chapi et al., 2017; Pour and Hashim, 2017;
Tehrany et al., 2018). For example the Topographic Wetness Index (TWI) and Stream
Power Index (SPI) are measures of potential water accumulation and erosive power of
a stream (Moore et al., 1991; Quinn et al., 1991). Curvature is in the focus of recently
published geomorphological studies trying to explain the occurrence of surface water
— potentially due to correlations of surface morphology to underlying bedrock stress
(Clair et al., 2015; Moon et al., 2017; Prancevic and Kirchner, 2019). The slope length
and steepness factor (Erosion-LS) is measure for erosion potential, which is commonly
used in the Universal Soil Loss Equation and has been identified as the most important
parameter in respect to quantifying erosion at least in Europe (Panagos et al., 2015).
For a multi-hazard risk context, (Aksha et al., 2020) summarized recent literature and
concluded that a geospatial approach can be more realistic than a chain of dynamic
models, which still hinge on availability of data and model scenarios. While academic
literature is divided in specific domains for individual hazards, the multi-hazard aspect
is of practical relevance to spatial planners, who are responsible for an area in its entirety
(Greiving et al., 2006). However, (Aksha et al.,, 2020) and similar studies use expert-
assigned weights for risk calculations (via an analytic hierarchy process). We argue that
this procedure should eventually be replaced by a sound empirical basis. Therefore we
directly train models on observed damage, which could be called a geoscientific take on
damage modelling.

Data-driven approaches, as opposed to analytical, are recently on the rise due to
increased availability of computational resources and suitable datasets. Especially
satellite remote sensing and voluntary geographic information now enable the
application of such methods in formerly data-scarce regions, which are often of interest
for environmental studies (e.g., remote wilderness) as well as for risk studies (e.g., high
vulnerability of economically poor regions) (Malgwi et al., 2019). Well-known examples
of novel data sources include the Copernicus mission (Aschbacher and Milagro-Pérez,
2012) and OpenStreetMap (OSM) project (OpenStreetMap contributors, 2017). Beyond
these, there are other more specific global datasets: For example, GlobalSurfaceWater
(GSW) is an earth observation product based on the entire Landsat archive, which
identifies the maximum extent, seasonality, and recurrence of water bodies since
1984 (Pekel et al., 2016). Globally consistent gridded soil information is provided
by the SoilGrids database (Hengl et al., 2017). A novel by-product of the TanDEM
mission makes a global forest/non-forest (FNF) layer available (Martone et al., 2018).
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WorldPop (Tatem, 2017) is another gridded statistical product, providing information on
population density, adjusted to official country census data. The Global Urban Footprint
(GUF) (Esch et al., 2012) is a binary layer of detected settlements from satellite imagery,
distributed by the German Aerospace Centre (DLR). The Tropical Rainfall Measurement
Mission (TRMM) and the follow-on Global Precipitation Monitoring (GPM) provide a
satellite-based global precipitation product with up to 3h temporal resolution. (Erazo
et al., 2018) compared different rainfall datasets for Ecuador and the Pacific Slope, and
concluded that TRMM represented El Nifio events better than the products from the
Climate Research Unit (CRU), Global Precipitation Climatology Centre (GPCC), and
European Centre for Medium-Range Weather Forecasts (ERA-Interim).

Drawing upon a large-scale field survey by Peruvian authorities in the aftermath of the
coastal EI Nifio 2017 we aim to identify drivers of damage based on open geodata and
machine learning (ML) methods. As opposed to traditional statistics, which typically
suffer from strong assumptions and require manual parametrization, ML algorithms
can deal with complex non-linear and interacting relationships. In the field of damage
modelling, ML has been applied to individual hazards on event-level (e.g. Terti et al.,
2017; Alipour et al., 2020) and on object-level (e.g. Rozer et al., 2019; Sieg et al., 2017;
Wagenaar et al., 2017; Nafari et al., 2016). Most of the cited authors used tree-based
algorithms in supervised mode. Although these methods are often called black-boxes,
there is currently a trend towards more interpretable ML, even to the point of making
causal interpretations (Zhao and Hastie, 2019). The main objective of this study is to test
the potential and limitations of such a data-mining approach, mainly based on remote-
sensing products, to characterise damage processes during El Nifio events. A fitted
damage model with sufficient skill can be used to generate empirical damage probability
maps. This paper is structured in the style of a ML project: data preparation and feature
engineering, feature selection, unsupervised clustering, supervised classification, model
inspection via feature importance ranking and partial dependence plots. An example of
a classified damage probability map is presented to prove the technical feasibility.

4.2.1 Study area and event 2017

Peru is located in the central and western part of South America and has an estimated
area of 1,285,215.60 km2. This is distributed in three macro geographical areas known
as the coast, mountains and jungle. Although the territory of the coast represents only
approx. 10.6% of the national territory, more than 58% of the country’s population are
concentrated there (INEI, 2018). Being a tropical country, the presence of the Andes
Mountains significantly influences the climatology and morphology of the territory. Due
to this, the coast of Peru is a mainly arid area, with little precipitation and vegetation,
whose geography is abruptly changing towards the Peruvian highlands that reach
altitudes of more than 6700 m.a.s.1. East of the Andes is the Peruvian jungle, a territory
mainly flat where the Amazon river originates. Between 2003 and 2018, the National
Institute of Civil Defence (INDECI) has registered around 75,000 emergencies, with
more than 53,000 occurring due to natural hazards and 52% of these were classified
as mass movements, floods and other dangers triggered by heavy rains (INDECI,
2019). According to the susceptibility map of the Peruvian territory to mass movements
of the Geological, Mining and Metallurgical Institute of Peru (INGEMMET), surfaces
like hillsides with slopes greater than 35°, fault zones, rock masses with moderate
to intensely weathered erosion and unconsolidated surface deposits are especially
susceptible for mass movement (Villacorta et al., 2012). On average, over the last 15 years
there have been 4,800 emergencies per year, excluding extraordinary years. However, in
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2017, the year of El Nifio phenomenon, the amount of emergencies increased by about
57%. The Multisectoral Commission in Charge of the National Study of the EI Nifio
Phenomenon in Peru (ENFEN) has classified the phenomenon that occurred in 2017 as
the third most intense in the last hundred years. However, its manifestation was abrupt
and surprising, since the monthly anomaly in December 2016 was estimated by the
Oceanic Nifio Index of -0.6, indicated for this area the presence of a weak magnitude
La Nifia phenomenon. (ENFEN, 2017; NOAA, 2020). The event was compared to the
coastal El Nifio of 1925 (Son et al., 2019). The impact statistics of the period of the
rainy season 2016-2017 in which the EI Nifio phenomenon occurred, shows that the
impact on the population and public infrastructure was severe, registering a total of
283,137 inhabitants who lost their homes and/or their livelihoods, due to which they
were considered as victims. 65,942 homes collapsed or were uninhabitable due to severe
damage (a map is provided in the result section) and around 51,854 hectares of crop were
lost. There was a significant impact on public infrastructure, registering 456 educational
institutions and 71 collapsed or uninhabitable health centres. From the 25 regions of the
country, nine were significantly affected. Severe damage occurred mainly in the coastal
regions Tumbes, Piura, Lambayeque, La Libertad, Ancash, Lima, Ica, and Arequipa but
also in the Cajamarca region located in the country’s highlands. The regions with the
largest number of affected population were Piura (98,894 people) and La Libertad (78,978
people) (INDECI, 2019).

4.3 Data and methods

4.3.1 Data sources and feature engineering

In the framework of the actions ordered by the Peruvian State in the presence of the EI
Nifio phenomenon 2017, the Organisation for the Formalization of Informal Property
of Peru (COFOPRI) received the assignment of carrying out “... the gathering of
information about the affected, collapsed and uninhabitable homes and the cadastre
of damages of the areas declared in emergency, and identifying the owners and/or
occupants of the homes and other properties in said areas” (Emergency Decree No.
004-2017, (Government of Peru, 2017). In this framework, trained personal by COFOPRI
collected information about the affected homes nationwide. While other entities also
recorded damage, this data of COFOPRI is the only one available with precise
geolocation, which is necessary for this study. In addition to data on the property
conditions and general characteristics of the dwelling, the physical damage to the houses
was identified, establishing four ordinal classes: mildly affected, i.e., non-structural
damage to doors, windows, or sanitation (D1); moderately affected, i.e., structural
damage which is repairable, and the building is still habitable (D2); uninhabitable, i.e.,
structural damage which is repairable, but currently presents a threat to the inhabitants
(D3); and collapsed, i.e., irreparable damage (D4). The available raw data includes only
coordinates and damage according to these categories. The database was analysed,
ruling out unaffected buildings and inconsistent data, resulting in a sample of 119,675
buildings that have been used in the study. At the closing date of this document, i.e.,
in April 2020 the damage data was available on the COFOPRI website (Geollaqta) for
download in csv format (comma delimited) which can be easily transformed into vector
format (shapefile or geojson) using any geographic information system. To frame the
problem as an ML task we used feature engineering, i.e., we derived predictor variables
(features, Table 4.1) from remote sensing products and open data, and assigned these
features in numerical vector format to the target classes (in our case the observed
damage). Candidate features were taken from literature, as cited in the introduction, and
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theoretical considerations. All topographic features in this study are based on the MERIT
elevation model (Yamazaki et al., 2017). A binary layer of steep terrain was computed
by applying Otsu’s threshold (Otsu, 1979) to a smoothened slope raster. The algorithm
automatically maximizes the between-class variance from a bimodal histogram. We used
a focal mean window of 5 x 5 cells, so that small patches of flat regions within the
mountains mainly fall into the steep category as well. This layer was then used to derive
the Euclidean distance to mountains (i.e., steep terrain).

GSW extent and OSM waterways were merged to obtain a product of potential
surface water occurrence. We observed that OSM provides surprisingly comprehensive
information about river courses and even underground channels. While GSW is
especially helpful for large inaccessible areas, OSM appears more accurate for urban
areas, which cannot be properly observed by Landsat. This merged layer was used
as input for GRASS r.stream.distance to derive height above and distance to water,
as alternative to the Height Above Nearest Drainage (HAND) raster provided by
(Yamazaki et al., 2019). Since SoilGrids is a statistical product, the variation in depth
appears quite smooth and for our purpose not relevant. We therefore decided to use
the grain size fractions from the top layer for calculating the erodibility (Erosion-K).
Pre-event mosaics of the Bare Soil Index (BSI) and Normalized Difference Vegetation
Index (NDVI) from Seninel-2 data have been processed in Google Earth Engine (Gorelick
et al.,, 2017). Both indicators are commonly used spectral ratios, yielding high values
for bare soil or vegetated regions, respectively. Rather than using the values at the
location of the buildings, we suppose that such indices gain more meaning in a natural
hazard context when weighted along the flow accumulation raster (i.e., using the
features as weight in GRASS r.accumulate, and dividing the weighted accumulation by
the unweighted accumulation). These engineered features, denoted as Erosion-K_acc,
BSI_acc, and NDVI_acc are expected to provide information on erosion processes and
sediment load. FNF and GUF are binary remote sensing products, mapping forest and
urban areas, respectively. These binary layers naturally contain some misclassifications.
We used a focal mean within 11 x 11 cells (roughly 1km?) as proxy for forest density
and urbanity, i.e., a cell has the value 1 when all cells within this area are classified as
forest/urban. While WorldPop is a product on population density, the GUF_density can
be interpreted as urbanity: high values identify urban centres, medium values suburbs
or small towns, and low values rural areas. Relatively high values of population per
pixel are also possible in rural areas (i.e., compact satellite towns). All features were
prepared in the form of stacked rasters, on the resolution of the DEM (90 m). Resampling,
where necessary, was done by bilinear interpolation. Only WorldPop, which represents
counts, was resampled manually by disaggregation and re-aggregation to preserve the
correct total amount of people, and co-registered by nearest neighbour. In cases where
rasters contained missing values (e.g., clouded pixels in BSI), holes were interpolated by
GDAL fillnodata — this should not have any effect on the results presented here, except
for the classified map, since the statistical analysis in this paper is based on extracted
points at the location of buildings, not on the entire rasters. Extraction of points was
done using the velox library in R. Values were then rescaled to the range of 0-1 and very
steep distributions were log-transformed for better performance of the distance-based
methods. Google Earth Engine was used to access, process, and download Sentinel-
2 spectral ratios, as well as TRMM precipitation data. Demanding computations were
performed on a Windows Server with 72 CPUs and 256 GB RAM. Data analysis and
visualization was carried out on a regular Lenovo ThinkPad laptop.
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TABLE 4.1: Candidate features.

Feature Explanation Data Source (Resolution) Reference Software
Altitude Absolute elevation above sea level MERIT DEM (90 m) Yamazaki et al. -
(2017)
Slope Derivative of elevation in steepest direction R spatialEco
Slope_focal Focal mean of Slope
Curvature Second derivative of elevation. Total curvature contains planform and profile directions Zevenbergen and R spatialEco
Thorne (1987)

TRI Terrain Ruggedness Index. Information on heterogeneity of elevation Riley et al. (1999) R spatialEco
TPI x6 Topographic Position Index. Calculated as elevation difference between a cell and the Reu et al. (2013) R spatialEco

average value in a defined neighbourhood. Single-scale TPI identifies local hills or Weiss (2001)

depressions. Multi-scale TPI can be used to classify complex landscapes. We used 6 scales:

90, 180, 270, 540, 990, 1980 [m]
SPI Stream Power Index. Represents the force of a flow, with high values in steep areas Moore et al. (1991) GRASS r.watershed
TWI Topographic Wetness Index. Represents potential accumulation of water, high values in Quinn et al. (1991) GRASS r.watershed

flat areas
TWI_focal Focal mean of TWI R raster
Erosion-LS Slope length and steepness (LS factor) of the Universal Soil Loss Equation GRASS r.watershed
DistToMountains ~ Distance to steep terrain. Computed as Euclidean distance to a binary layer from Otsu’s Otsu (1979) Python scikit-image,

threshold on Slope_focal GDAL proximity
HAND Height Above Nearest Drainage. Normalization of the terrain, where streams are set to0 ~ MERIT Hydro (90 m) Yamazaki et al. -

and height difference is computed along the flow direction (2019)
HANW Height Above Nearest Water. Same as HAND for different stream raster from GSW and ~ GSW + OSM (30 m, vector) Renno et al. (2008) GRASS

OsSM r.stream.distance
DistToWater Distance to water, along the flow direction
GSW _occ Global Surface Water occurrence Global Surface Water (GSW) Pekel et al. (2016) -

(30 m)
BSI Bare Soil Index. Spectral ratio which identifies bare soil Sentinel-2 Multi-Spectral Google Earth Engine
Instrument (10 m)

BSI_acc BSI weighted along flow accumulation GRASS r.accumulate
NDVI Normalized Difference Vegetation Index. Spectral ratio which identifies vegetation
NDVI_acc NDVI weighted along flow accumulation
Clay Percent clay in topsoil SoilGrids (250 m) -
Erosion-K Erodibility (K factor) of the Universal Soil Loss Equation GRASS r.uslek
Erosion-K_acc Erosion-K weighted along flow accumulation GRASS r.accumulate
FNF_density Forest density. Maximum when all FNF cells within an 11x11 window are classified as TanDEM Forest / Non-Forest =~ Martone etal. (2018) R raster

forest (FNF) (50 m)
GUF_density Urbanity. Maximum when all GUF cells within an 11x11 window are classified as urban ~ Global Urban Footprint (GUF)  Esch et al. (2012) R raster

Worldpop
DistToRoads

TRMM_max

TRMM_sum

Population density in people per pixel
Euclidean distance to roads

Rainfall 3-hour maximum

Rainfall sum from January to April 2017

(84 m)
WorldPop (100 m)
OpenStreetMap (OSM) (vector)

Tropical Rainfall Measurement
Mission (TRMM) (30 km)

Tatem (2017)
OpenStreetMap
contributors (2017)

R raster, GDAL warp
GDAL proximity

Google Earth Engine

%33
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Feature selection

For the purpose of clustering, it is often recommended to restrict the number of features
to the necessary minimum, since clustering algorithms tend to be sensitive to duplicated
information content, noise, and shape of the feature value distributions (Milligan,
1996). We chose the rainfall, information about the streams from HAND, potential
accumulation from TWI, soil from Erosion-K, vegetation from NDVI, and settlements
from GUF_density. TPI was included on small, medium, and large scale, together with
altitude and slope, for delineating geomorphological regions as originally presented by
(Weiss, 2001). Collinear features are not necessarily a problem for statistical learning
algorithms, if the aim is simply to produce the most accurate predictive model. However,
if we aim at estimating feature importance these interactions may lead to wrong
conclusions, since the information content of two collinear features is still available to
the algorithm even when one is removed — therefore judging both as not important. For
inspection we plotted a dendrogram of spearman rank correlation (Figure 4.1) between
the features, which shows how closely the features are hierarchically related to each
other. We selected one feature per group at threshold 1 — with two exceptions: NDVI
was discarded for consistency with BSI and Erosion-K, where only the weighted versions
were used. Rainfall sum and maximum were both kept, despite some correlation, since
we consider this to be different information and wanted to investigate the potential of
TRMM for this purpose. The selection resulted in 20 features used for classification.
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FIGURE 4.1: Hierarchical clustering on Spearman rank correlation of the candidate features. The
dashed line marks the threshold used for defining groups.

4.3.2 Clustering methods

We visualized the data via t-distributed stochastic neighborhood embedding (t-SNE,
van der Maaten and Hinton, 2008), and eventually applied density-based clustering
OPTICS (Ankerst et al., 1999) on the t-SNE results. This yielded almost perfect separation
of the visible shapes and understandable meaning when visualized on a geographical
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map (Figure 4.3). Contrary to some theoretical caveats, it has been observed that this
procedure is able to handle highly complex real world datasets like genome expression
profiles (Macosko et al., 2015) or hand-written digits (MNIST, Lecun et al., 1998), on
which standard algorithms like k-means fail. This seems to be the case here as well
(Appendix).

4.3.3 Classification methods

The fraction of variability in observed damage explained by our datasets was estimated
via machine learning algorithms of varying complexity, implemented in Python
using scikit-learn (Pedregosa et al., 2011). To account for the structural differences of
algorithms, a comparison of different types of models is presented (linear generative
and discriminative, non-linear tree-based and kernel-based). Ordinal logistic regression
(OLR) is explicitly designed for handling ordinal data. Therefore, this approach would
be the most appropriate solution from a theoretical point of view. We used the all-
threshold version of the MORD package (Pedregosa et al., 2017). Naive Bayes (INB)
is the generative counterpart of multinomial regression (Ng and Jordan, 2002), which
has been shown to perform surprisingly well in classification despite its oversimplified
assumptions (Ester et al., 1996; Hand and Yu, 2001). Since our data is far from normally
distributed, and scikit-learn does not support other distributions, we applied equal
frequency discretization and used multinomial NB. Support Vector Machine (SVM)
(Vapnik, 2000) is a frequently used discriminative algorithm in statistical learning. It
selects actual samples from the data as support vectors of a maximum margin separation
plane. For non-linear classification, SVM relies on a kernel function to increase the
dimensionality of the input data to potentially infinite degrees, where classes ideally
become linearly separable. When mapped back into the original feature dimension,
this hyperplane appears non-linear. Parametrization affects the kernel function as well
as margin criteria (support vectors are those which generate the maximum margin
plane, but some violation may be allowed by the user to avoid overfitting). We have
used a radial basis function (based on LIBSVM) and a linear kernel with 11 penalty
(LinSVM) (based on LIBLINEAR) (Chang and Lin, 2011; Abdiansah and Wardoyo, 2015).
To provide probability estimates for these models, we applied Platt scaling, which is
essentially a logistic regression on the distance to the SVM hyperplane (Platt, 1999).
Random Forest (RF) (Breiman, 2001a) can be described as ensemble of decision trees,
constructed via bagging, bootstrapping, and random feature selection. The method is
very flexible, computationally efficient, and not too sensitive on hyperparameters. RF is
less prone to overfit than individual decision trees (the generalization error converges),
but in practical application the training data is often not sufficiently representative, and
regularisation is most effectively implemented via restricting the maximum depth of
the trees. Probability estimates of RF are generated from the class distributions in the
terminal nodes. We also scaled the RF probability estimates by the same procedure as
for SVM and LinSVM.

Performance metrics

Since the test scores were computed on equally distributed classes, only two metrics
are shown: total accuracy is the most common classification metric, simply counting the
percentage of correctly classified labels (Eq. 4.1). Random guessing, or always predicting
the same out of 4 classes, would result in a score of 0.25, which is marked in the
plot as chance agreement. Values above this threshold indicate a true skill of a model
(comparable to the kappa statistic). Log loss (Eq. 4.2), sometimes called cross-entropy, is a



4.3. Data and methods 75

metric for probabilistic classification, which penalizes “confident wrong” decisions. It is
also the internal cost function of multinomial logistic regression. Random guessing will
simply result in a score of log(K), and lower log loss values indicate better probability
estimates.

Correct labels
Number of samples

Total Accuracy = (4.1)

logPr(Y|P Z 2 zklog sz (4.2)

where Y is a matrix of true labels in 1-of-K encoding with elements y;; and P the associated matrix of
estimated probabilities with elements p; \

Model inspection

Feature importance metrics are used to create a ranking of features which to consider
for a certain classification task. We computed the permutation importance, defined
as variation of the skill of a fitted model in response to permutations of individual
features, as implemented in scikit-learn. Permutation importance has been shown to be
theoretically more reliable than measures based on impurity decrease (Strobl et al., 2008)
and already been applied for RF models in the field of flood damage data (Sieg et al.,
2017; Rozer et al., 2019). Since the approach is model-agnostic, it can be used to estimate
importance even for algorithms which do not intrinsically provide such a measure
(e.g., non-linear SVM). Also, the importance measure for various algorithms should
be comparable when consistently computed by the same approach. Similar to (Rozer
et al., 2019) we further normalized the mean scores per algorithm, and weighted them
by the classification accuracy, to merge the rankings into a single plot while retaining the
information from the individual algorithms. Partial dependence plots (PDP) (Friedman,
2001) were used to visualize the shape of the marginal effect of a feature on the prediction
of the trained models. PDP average the predictions for a set of samples (the training set)
when only the specific feature of interest is altered across its entire value range, while
all other features of these samples stay fix. Finally, an RF model was used to develop a
spatial damage probability map, based on the feature raster stack.

Sampling

Training and performance evaluation was conducted via a nested cross-validation
(Figure 4.2). In this scheme, the inner loop optimizes the hyperparameters based on 10-
fold train/test-splits, while the outer loop provides independent holdout sets. As the
number of buildings with high damage is naturally lower than the number of buildings
with low damage, we applied oversampling to balance the training set. In statistical
learning, this class imbalance would otherwise cause a problem: when an algorithm is
trained to optimize total accuracy, it often learns to trivially predict the most frequent
class all of the time (Krawczyk, 2016). Our aim, though, was not to obtain the highest
predictive accuracy, but to derive insight on the question what separates these classes.
The oversampling was implemented after the outer train/test-split, to avoid replicated
samples falling into both folds to bias the performance score on test set. The best
estimator of every inner cross-validation loop was used to compute the importance
score. Also the permutation process was repeated 10 times for the same fitted model,
resulting in 100 importance scores per model per feature.
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FIGURE 4.2: Sampling workflow (nested cross-validation).

4.4 Results and discussion

4.4.1 Clustering results

The damaged buildings were grouped into 9 clusters, which exhibit a regionally
consistent distribution on the map (Figure 4.3) and can be interpreted in a meaningful
way. Boxplots of feature value distributions per cluster (Figure 4.4) help to understand
the environmental characteristics, while the corresponding relative frequency of damage
grades indicates the severity of impact. The largest clusters are the high mountain
ranges #4 and steep canyons #5, clearly distinguished from the rest by altitude, slope,
and multi-scale TP1. While #4 is characterized by highest absolute altitude, #5 exhibits
the highest range of altitude, as well as of HAND and SPI. It is noteworthy that the
mountains in Peru also have more forest cover than the coastal areas, which is reflected
in FNF_density and NDVI. Vegetation is scarce in the arid coastal areas, where the soil
has poor humidity. In contrast, the mountain forests fully occupy the middle part of the
western flank of the Andes mountains in Peru and inter-Andean valleys, at a soil with
moderate moisture deficit.
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FIGURE 4.3: Clusters on a geographic map and in t-SNE space. Points in grey colour have been
excluded by the clustering algorithm as “noise”, and not been used in the further analysis.
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FIGURE 4.4: Distribution of feature values and relative frequency of damage grades per cluster:
mildly affected (D1), moderately affected (D2), uninhabitable (D3) and collapsed (D4). Number
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Rural Lambayeque #3 and the otherwise similar urban areas #1 are separated by
DistToRoads and GUF_density. Cluster #2 contains buildings along the northern rivers,
including Rio Chira (lowest DistToWater). Piura, the region where the event hit the
hardest, is further subdivided by the algorithm into 4 small but dense clusters, based
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mainly on variations in TRMM rainfall measurements: #6 consists of Piura’s cities, which
were affected by significantly more rain than the cities in #1. Clusters #7 and #9 appear
spatially connected in the Rio Piura basin, with #9 showing higher maximum rainfall.
Finally, #8 is identified as the zone where highest 3-hour maximum and highest sum of
rainfall coincided. Already from comparing the boxplots and histograms the impression
arises that measured intensity of rainfall does not directly relate to damage. Clusters #8
and #9 do not stick out with respect to damage grade D4 (collapsed), but rather with
D3 (inhabitable). This is most obvious when comparing the very similar clusters #7 and
#9. A large D4 fraction is found in #5 with low rainfall, although the fraction of D1 is
also large in this cluster. It is reasonable to assume that rainfall, locally and upstream,
triggers flash floods or landslides causing heavy destruction within narrow channels.
The urban cluster #1 exhibits less relative damage compared to the rural areas in #3 at
similar rainfall. Interesting is cluster #3, which does not only have the highest D4 fraction
of all clusters; it is also the only region where more D2 cases were observed than D1
cases. We assume that the area was partly hit by fluvial floods in addition to long-lasting
inundation from ponding water. This would fit to the relatively high values of TWI and
low values of HAND. We might further speculate that building quality and shielding
effects of the urban environment lead to less damage in cities in comparison to rural
areas. This observation is in accordance with Ettinger et al. (2016) who state that dense
urban areas were less damaged. From a hydraulic point of view, urban morphology
is expected to affect the flow velocity and consequently the hydraulic pressure on a
building, as for example sketched in Maiwald and Schwarz (2015).

4.4.2 Classification results

Various machine learning algorithms were trained to predict the observed damage,
using all data at once, as well as data from each cluster separately. The measured
classification accuracy was moderate for all models, but consistently better than chance
agreement (Figure 4.5). The skill of the linear models is very low for the entire dataset,
but apparently increases for smaller clusters — potentially, linear relationships are present
in smaller subsets of the data. The highest scores are obtained for the clusters #5, #7
and #9, but RF and SVM show the most stable performance when using all data at
once. The highest total accuracy of all models was 55% correct labels with 4 classes
in cluster #7; RF trained on all data yielded a very stable mean of 48%. To put this
into perspective: the spatial resolution of our features is relatively coarse, and empirical
studies on damage data typically report rather low scores, even when intensity metrics
and building details are included in the analysis. Ettinger et al. (2016) claim to predict
67% correct labels, also with 4 classes, in a detailed local flash flood study in Arequipa
using high resolution data, Jakob et al. (2011) report about 50% for debris with 4 classes.
In Germany, Laudan et al. (2017) produced an imbalanced model, which failed for
high damage grades. Compare also the regression approaches of Merz et al. (2013) for
percental damage to residential buildings with an RMSE around 0.1, Sieg et al. (2017) for
damage to commercial buildings and goods with RMSE around 0.25.

The log-loss scores imply quite unreliable probability estimates of the classifiers. NB is
known to be weak in this respect due to the independence assumption. OLR should
provide more reasonable estimates, and we also observed this tendency, but it suffered
from its very low overall skill in this task. Interestingly, SVM achieved the lowest
(i.e., best) log-loss values, despite not even being a probabilistic method — in fact, the
probability is only generated via additional logistic regression on the distance to the
hyperplane (Platt, 1999). It is worth to mention that RF without calibration (not shown)
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FIGURE 4.5: Skill of different algorithms trained on selected features for all data and per cluster.
For accuracy, higher values better, for log-loss, lower values are better. Dashed blue lines indicate
chance agreement.

performed an order of magnitude worse, with log-loss scores up to 8 in cluster #6.
RF may sometimes assign confident but wrong labels on unseen data, since tree-based
models are by design unable to extrapolate. Although the scores get more stable as more
training samples are used, it seems recommendable to also calibrate the RF output when
probability estimates are desired (as suggested by Dankowski and Ziegler (2016) among
others).

Feature importance

As already observed by Rozer et al. (2019) among others, the individual algorithms
rarely agree on the ranking of features (Figure 4.6), except in the case of a single very
important predictor — it is therefore first of all interesting to look at the consensus: TWI
is very clearly selected as the most important feature for all data, clusters #7, #8, #9,
and — despite less contribution from SVM - also #3. These happen to be mainly areas
of low topography and intense rainfall. The precipitation data is in most cases assigned
medium to high importance by all algorithms equally, with TRMM_sum ranked first in
clusters #2 and #4, and TRMM_max in the top three for #1, #3, #5, #6, and #7. In the
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canyons, #5, all algorithms agree on the importance of Erosion-LS and BSI_acc, and in
the high mountains, #4, GUF_density receives similar contributions. Other high-ranked
features are mainly selected by a single algorithm: BSI_acc in #1, FNF_density in #2, and
TPI_990m in #1, #3, #6, and #9 were all chosen by RE. SVM assigned relatively high values
to altitude in #1, #3, #5, and #6, while LinSVM pushed curvature up in #1 and #3. For all
data (i.e., without clustering), the ranking is dominated by the complex algorithms, due
to the low skill of NB and OLR, and explaining this ranking is not straight-forward. In
fact, it seems that RF, despite being the strongest classifier in terms of accuracy, shows the
most unexpected behaviour in the importance ranking: even the very clear importance
of TWI in cluster #9 would turn to a mere second place after TPI_990m, if relying solely
on RF. Still, it is possible that RF detects real interaction effects with TPI_990m which
the other algorithms fail to discover. Already in the correlation dendrogram (Figure 4.1)
the linkage between curvature and small-scale TPI is strong. Besides their intended use,
curvature and BSI might carry textural and spectral information, respectively, which
an algorithm of sufficient complexity might exploit to learn patterns e.g., of landforms,
urban structure, or other characteristics.
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FIGURE 4.6: Importance ranking by 5 different algorithms. Shown is the mean value from
100 repetitions, rescaled to the range [0, 10] per cluster per algorithm, and weighted by the

classification accuracy.
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Partial dependence plots

PDP are presented to further investigate the model behavior when training on the
entire dataset (Figure 4.7). The stepwise behavior of NB reflects the discretization levels.
Since the discretization followed an equal frequency strategy, these steps give a visual
impression of the distribution of the data. In some cases, like Curvature, the vast majority
of samples fall in a narrow value range, and the behavior of the models outside that
range is rather not credible.

A strong effect is found in the PDP for GUF_density and DistToRoads, which are
apparently not among the top features in the importance ranking. Higher urbanity
indeed leads to less prediction of high damage (D4) and more prediction of low damage
(D1). TWI and HAND exhibit the expected trend (higher TWI and lower HAND lead to
more predicted damage). A very remarkable finding, best seen for RF and SVM, is that
increasing intensity of rainfall, TRMM_sum and TRMM_max, leads to damage grades
D1-D3 in the expected order, but D4 (collapse) is caused by different factors. The rainfall
maximum seems to be more damaging than the sum. The interpretation in the case of
Curvature and FNF_density is that there is no net effect of these features (i.e., we cannot
state that higher Curvature leads to higher or lower damage). While this finding seems
to contradict the importance ranking, it is more in agreement with our expectations.
Both results together, the importance ranking and the PDP, imply that a feature may be
selected as important by a learning algorithm, taking into account various interaction
effects, without containing any clear message for process understanding. Since the PDP
only displays the marginal effect, it is possible, especially for complex algorithms like
RF, that individual effects average out. The plot in this case would look flat, despite high
variability for individual samples. Effects visible in the PDP are causal for the models,
not necessarily causal in nature. PDP can potentially be computed for every feature of
every model for every cluster and every target class. In principle, PDP can be computed
for the interaction of multiple features. Unfortunately, visualization beyond 2 features,
or the comparison of different algorithms, is challenging. An example of a 2D plot, based
on RE, is provided (Figure 4.5) to underline a central thematic finding of this study: The
intensity of rainfall, sum and maximum, leads to damage grades D1-D3 in the expected
order, but D4 (collapse) is caused by different factors. Although there is a slight increase
of probability for D4 in the extreme cases, maximum seems to be more damaging than
sum. Damage grade 4 has higher probability of occurrence in areas of high SPI and
BSI_acc/low HAND and low GUF_density.

From the abovementioned observations, we draw the following thematic conclusions:
TWI is the most useful of the tested topographic features, especially in case of pluvial
floods in low elevation terrain. Rainfall from satellite measurements, despite the coarse
spatial resolution, can be useful for damage modelling. The sum of rainfall seems more
important for vegetated mountains and low riverbeds, while the maximum seems more
important in steep canyons and urban areas. Erosion-LS and BSI are good indicators in
steep terrain or desert areas. This is in line with our expectation.



82

Chapter 4. A data-mining approach towards damage modelling for El Nifio events in Peru

Partial dependence

0.40

0.25 1

0.10

0.40

0.25 1

0.10

0.40

0.25 1

0.10

0.40

0.25 4

e
=
o

2
B
o

0.25 4

0.10

0.40

0.25 4

0.10

0.40

0.25

0.10

0.40

0.25

0.10

TWI - D1 TWI - D2 TWI - D3 TWI - D4
0.40 0.40 0.40
L1 —,
\H\.\ 0.25- —ti'—_d 025 | H=— | 025
: . : 0.10 -~ . ) 0.10 ' ! 0.10 - .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
HAND - D1 HAND - D2 HAND - D3 HAND - D4
0.40 0.40 0.40
/ /
Z:F’ 0.25 { e [l R — 0.25 4
-

: ' : 0.10 L . | 0.10 L ' , 0.10 L+ ' :
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
GUF_density - D1 GUF_density - D2 GUF_density - D3 GUF_density - D4
= ty 0.40 = ty 0.40 = ty 0.40 = ty

I_J /
T =
025 e | 025 z‘___.ﬁ—b\—__/\__/_ 0.25 /

. v . 0.10 L . . 0.10 L . . 0.10 L+ v .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
DistToRoads - D1 DistToRoads - D2 DistToRoads - D3 DistToRoads - D4

0.40 0.40 0.40
‘\\\ 025 || 025 | 0.25 - /

. r * 0.10 = v ; 0.10 T T 0.10 r .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
TRMM_sum - D1 TRMM_sum - D2 TRMM_sum - D3 TRMM_sum - D4
0.40 0.40 , 0.40

r pa
= 0.25 4 jﬂﬁz < 0.25{ =" 0.254~
\ A= /

T T T 0.10 T T 0.10 = r T 0.10 T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
TRMM_max - D1 TRMM_max - D2 TRMM_max - D3 TRMM_max - D4

= 0.40 = 0.40 = 0.40 =
== e —
0.25 N 0.25 f 0.254 —-

T T T 0.10 = T T 0.10 = ™ T 0.10 T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Curvature - D1 Curvature - D2 Curvature - D3 Curvature - D4

0.40 0.40 0.40
ﬁ\' 0.25 ‘i:—-:__—_____i‘ 0.25{ = 025{
N —— —

T r T 0.10 1 : 0.10 L T T 0.10 r T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
FNF_density - D1 FNF_density - D2 FNF_density - D3 FNF_density - D4
= ty 0.40 = ty 0.40 = y 0.40 = Y

_ —_— _~ —~ _ —
= — 0.251 T 0.25 1 R —— 0.25 1 — =]
: . : 0.10 - . ! 0.10 L . . 0.10 L+ . :

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Feature value (normalized)

NB OLR

—— LinSVM

— SVM

RF

FIGURE 4.7: PDP for using all data. Y-axis is the predicted probability of the class.
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FIGURE 4.8: PDP interaction of 2 features, generated using PDPbox.

Damage probability map

Figure 4.9 presents an example of a classified damage probability map, based on RF, to
demonstrate the technical feasibility. Figure 4.9A shows the most likely damage grade,
while in B the probability of D4 is plotted, and C is a natural colours image (Google
Satellite) for comparison. RF was chosen due to its classification accuracy, as well as
computational efficiency. Such a spatial prediction can also be useful to visualize what
the ML model has learned, making the decisions more transparent, although detailed
evaluation for every model is beyond the scope of this study. In the presented example,
rivers and desert areas were learned to be dangerous in case of El Nifio, while urban
areas seem relatively safe places. A map produced by a damage model with sufficient

skill could help to identify critical areas for risk planning.
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FIGURE 4.9: Example of a damage probability map, produced by RF on 20 features.
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4.5 Conclusion

This study has demonstrated how a research question from the natural hazard risk
domain can be formulated as data-mining problem, and the potential of ML methods
in combination with open geodata, to identify drivers of observed building damage
from a compound EI Nifio event. We found t-SNE a very valuable technique to visualize
the high dimensional dataset, and clustering via OPTICS to yield a good separation
of regions with different dominant processes. Plotting the clusters spatially on a map,
and comparing the distribution of feature values to the relative frequencies of damage
grades, already helped to discover some key findings. Classification accuracy of the non-
linear models (RF, SVM) was within the expected range for an object-specific damage
model, and given the resolution of the data. Performance of the linear classification
algorithms (OLR, NB, LinSVM) was just slightly above chance agreement when using all
data at once, and a little higher in smaller clusters. Apparently, linear relationships might
be found when subdividing the dataset, but complex models are necessary to capture the
entire event. SVM with radial kernel is computationally very expensive, especially in the
optimization via grid search, therefore RF seems the algorithm of choice for such a task:
it shows consistently good accuracy, and scales well with high numbers of observations
due to efficient parallelization. Since damage processes at the object level are still difficult
to predict, there is currently a trend towards the development of probabilistic damage
models, which capture the stochastic nature of the observations. Probability estimates
in this study were rather unsatisfactory, although SVM with Platt scaling was found
superior to RF in this respect. We clearly recommend to use probability calibration for
RF as well. Gaussian Process would be a classifier rooted in solid probability theory, but
it turned out as computationally unfeasible for the amount of data at hand (complexity
O(n?). Besides the selection of algorithms, the preprocessing of data, and especially
our manual feature engineering, might be a limiting factor for the model skill. If the
aim is a predictive model with maximum accuracy, a possible solution would be to try
deep learning via a convolutional neural network, which performs feature engineering
automatically. In that case, however, process understanding will be more difficult to
extract.

Previous studies presenting feature importance rankings often relied on a single
algorithm. By weighting the normalized scores for different algorithms, and providing
the individual contributions, a more facetted picture appears. Computing feature
importance scores per cluster yielded more understandable results than the ranking for
the entire dataset. It is necessary to keep in mind that those variables which define
the cluster have lower variance and will accordingly not be as useful in separating
samples within this same cluster anymore. In areas of strong precipitation we therefore
do not find the precipitation as most important, but rather local topography — those
features that make a difference in case of strong precipitation. However, some results
are difficult to understand, e.g., the high ranking of curvature for the entire dataset.
We would like to point out that studies presenting such feature importance rankings
still have to be taken with care, and strongly suggest to provide partial dependence
plots as complementary information about the direction of the influence. A potential
explanation for the sometimes contradicting results is the moderate model skill. It is
possible that models with better generalization performance would also yield more
stable feature importance rankings. A classified map may further visualize which
patterns a model has learned, although this study only presented a single example to
prove the technical feasibility. A clear limitation is the resolution of the elevation model.
Finer local segmentation, and higher classification accuracy, might be possible by the
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same methodology, when using high resolution topography.

Thematically, we could show that topography, settlement indicators, and rainfall
partially explain the observed damage. The datasets used allow for separating regions
with different dominant damage processes, like mountain regions, canyons, floodplains,
urban areas, and regions affected by exceptionally strong rainfall, via unsupervised
techniques. These clusters exhibit different histograms of damage grades — most
vulnerable appear to be the canyons and rural areas, while urban centres were less
damaged at similar rainfall. TWI is clearly selected as the most important topographic
feature, especially in regions of strong rainfall, which should be considered for hazard
maps. Slope length and steepness (Erosion-LS) is identified as main driver of damage
within canyons and lower mountain ranges. TRMM_sum and TRMM_max are often
selected despite the coarse spatial resolution. We are therefore optimistic that satellite-
based rainfall data can be valuable for damage modelling. We could further show that
the models learn from observational data to predict damage grades D1-D3 as expected
with increasing intensity of rainfall, but D4 (collapse) is driven by different factors like
the location close to a stream in a rural environment (low HAND and GUF_density).
We have sketched the concept of empirical damage probability maps. However, the
presented map is meant as prove of the technical feasibility, and by no means a result
to use in practical risk management, which to create would be a study on its own. So far,
we have shown what is possible when using openly available data. We are optimistic that
a similar methodology with higher resolution data, and including characteristics of the
affected buildings, could obtain better performance in terms of accuracy and probability
estimation, and consequently help to improve risk assessments.
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4.6 Appendix

Although clustering is by definition an unsupervised procedure, many methods require
the user to specify the expected number of clusters. This is usually not possible when
real data is analysed. Global criteria for estimating the optimum number of clusters are
arbitrary and often contradicting (the R package NbClust includes 30 metrics). Arguably,
for geographical data, the most suitable validation is on a spatial map. Depending on
the size of the data, it may be unfeasible to manually inspect many different clustering
approaches in detail. In that case, an embedding technique like t-SNE is helpful.

At first, we tested simple k-means and hierarchical clustering, applied in the original
data space, with various numbers of clusters. Results were difficult to interpret on
a geographical map. We then visualized the data via t-SNE, iteratively tuning the
parameters to test the stability of the resulting shapes. The labels from k-means were
in moderate agreement with the t-SNE shapes for about 6 clusters, but apparently
contained some confusion, and additional clusters were visible which could not be
separated by any tested approach (Figure 4.10). From 8 clusters upwards, k-means
started to split the central cluster in t-SNE space, which corresponds to the high
mountain ranges in geographical space. Therefore a density-based clustering (OPTICS)
was applied to label the t-SNE shapes. OPTICS also requires the user to set a threshold,
but provides a visualization to help making this decision. Two thresholds appeared
meaningful, resulting in 7 and 9 clusters, respectively. The slightly lower threshold
produced a large cluster composed of urban areas, rural Lambayeque, and the northern
rivers, i.e. on a geographical map the decision was obvious (Figure 4.3).
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FIGURE 4.10: Example of clustering attempts using k-means in the original data space for 5-9

clusters (A-E), and OPTICS in t-SNE space with a threshold resulting in 7 clusters (F). Clusters
are represented by colors, no labels were assigned.
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Chapter 5

Synthesis

5.1 Answering the research questions

51.1 QI1: Which open geospatial datasets contain useful information for
flood hazard and risk modelling?

All studies presented in the previous three Chapters required a digital elevation model.
Although not novel per se, DEMs are increasingly available free of charge in high
spatial resolution (e.g. 10 m and below in the USA, even 0.5 m in the Netherlands
https://www.ahn.nl/, accessed 03.01.2022). Refined datasets with error correction have
improved the quality of older products, in the case of MERIT even with explicit
focus on hydrological applications (Yamazaki et al., 2019). The DEM created by the
TanDEM mission is also openly available in a 90 m version (German Aerospace Center
(DLR), 2018), while the high resolution version is distributed commercially. The German
DGM10 that was used in Chapter 3 is only free of charge for state agencies according to
§4 V GeoBund (https://sg.geodatenzentrum.de/web_public/gdz/lizenz/Vertrag_
GeoBund.pdf, in German, accessed 18.10.2021), and fee-based for third parties. Higher
resolution DEMs from LiDAR sources have been made available as open data by
individual federal states, but not for entire Germany yet. Hydrodynamic models, such
as used in Chapter 3, depend heavily on a DEM. Explanatory features derived from a
DEM have also been found most relevant for the ML-based hazard and damage models
presented in Chapters 2 and 4.

Obviously useful in the flood risk context is information on hydrography. If necessary,
such information can be derived from a DEM, as done for the SWIM hydrological model
in Chapter 3. However, hydrography is also openly available from the OSM water layer.
The contained data is crowd-sourced, but from visual inspection against background
images the product appeared to be of good quality in Houston and large parts of
Peru. Mapping of water bodies and even underground channels seems to be more
comprehensive than the mapped streets and buildings in OSM for these regions. Another
tested product is GSW, derived from almost the entire Landsat archive. As noted in
Chapter 4, a combination of OSM water and GSW could overcome the limitations of both
products, as OSM is more comprehensive in urban areas, which are difficult to observe
from space, and GSW more reliable in the remote wilderness that is difficult to access by
human cartographers. Results of Chapters 2 and 4 hint at the importance of HAND and
distance to channels for flood hazard and damage modelling.

Spatially explicit precipitation measurements can typically be obtained from national
institutions such as the NWS in the USA, SENAMHI in Peru, or the DWD in Germany.
However, not all countries have the same density and reliability of measurement
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stations. The aggregated feature importance rankings in Chapter 4 show that satellite-
derived rainfall measurements were useful for explaining patterns of damage during
an El Nifio event in Peru. Such products are available quasi-globally in high temporal
resolution (currently 30 min for GPM), while spatial resolution might be improved by
sophisticated downscaling techniques (Sharifi et al., 2019).

Land cover information in a static format can be taken from products such as CORINE in
Europe (Varga et al., 2021), or from coarse global datasets that are still rather inconsistent
(Hua et al., 2018; Chirachawala et al., 2020). Near real time information on vegetation
cover, soil or sealed surfaces can be derived from spectral ratios such as NDVI, BSI, and
others, as conducted in Chapter 4 to estimate pre-event conditions. Less dynamical but
still difficult to observe is the subsurface. Soils can be very heterogeneous on the small
scale and only extensive fieldwork can clarify the true conditions. SoilGrids attempts to
compile, harmonize, and interpolate data from fieldwork around the globe — however,
the information is associated with large uncertainties, especially in areas with low
density of soil profiles (Poggio et al., 2021). The BSI was selected as useful predictive
feature by some damage models in Chapter 4. Other soil information was never among
the most important predictors, though, and not even considered in Chapter 2 as the
study area was primarily urban.

Mapping of exposed objects has reached the building level even on national scale (OSM
in Europe, Microsoft USBuildingFootprints in the USA). Aggregated information is at
least globally consistent (GUF, WorldPop). Further methodologies exist for extracting
detailed vulnerability-related information, for example on construction material and
building height, for large areas (Pelizari et al., 2021; Geifs et al., 2019; Paprotny et al,,
2020).

The standardized access via data cubes such as GEE is promising, but still today many
sources of information need to be downloaded individually and merged. Besides the
datasets used in this thesis, additional promising sources include social media and street
view camera footage. A very prominent data source in the flood risk context are flood
extent maps of real events, which are for example distributed rapidly and free-of-charge
by the Copernicus EMSR service. Mapped inundation extent can be useful in emergency
response, when available during or directly after a flood event (Chung et al., 2015;
Oddo and Bolten, 2019). In principle, it should also be possible to generate rapid impact
assessments by applying damage models on this satellite-derived hazard information,
and to use the flood masks as input for calibrating hydrodynamic models (Taubenbock
etal.,, 2011; Dasgupta et al., 2021).

5.1.2 Q2: What is the quality of current satellite-based flood masks and how
can they be improved?

The presented evaluation of different flood masks for the hurricane Harvey event in
Houston, 2017, clearly shows that currently available products have major problems in
detecting flood in vegetated and urban areas. The Copernicus EMSR product detected
only 1% of flooded vegetation and even less flooded urban areas. High quality products
correctly detected about 20% to 47% of flooded vegetation and up to 42% of flooded
urban areas. The primary reasons for this low skill are specific characteristics of the
sensors (typically SAR) and viewing geometry, i.e. issues that can hardly be solved
during the creation of flood masks from the sensor data. This finding has implications
for subsequent use of these products in hydrodynamic or damage models. Reliable
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derivation of water depth is accordingly difficult, as algorithms require a precise land-
water boundary (Zwenzner and Voigt, 2008; Cohen et al., 2017). In the early stage of
this research project, the limitations of these flood masks in the case of the EI Nifio event
investigated in Chapter 4 became obvious. Therefore it was not possible to include such
products in an empirical study of flood damage.

Specificity of all tested products was found to be high, though, meaning that detected
flood corresponds to true flood. Therefore it makes sense to treat satellite-based flood
masks as PU data, as long as no spatial validity layer is provided. In Chapter 2 it
was further demonstrated how these products can then be improved by a secondary
modelling step, using OCC methods to re-learn the flood extent from topographic and
hydrographic features. Including additional features from rainfall measurements and
distance to buildings led to mixed results and cannot be recommended in general,
although this finding might need to be re-evaluated in different case studies. It is
imaginable that especially topographic features have more explanatory power for
detecting flooded vegetation than flooded urban areas, which might be influenced by
additional factors such as sealed areas or a sewer system. In principle, the developed
procedure can use any kind of explanatory features, so there is potential for future
studies.

According to the performance metrics, the so-obtained refinement of the flood masks
can be very successful. However, in a practical application the user has to select a model
in the absence of reference data, and define a classification threshold to the continuous
output of the algorithms. The main issue with these extrapolations is the “sample bias”
from unrepresentative coverage of the initial masks. This could potentially be solved by
including additional positive class samples (flood locations) from within the city, e.g.
taken from street camera footage or social media. A promising way forward would be
data fusion of satellite-derived initial masks and spottily mapped urban flood extent by
street cameras or social media. For the derivation of water depth, methods are needed
that allow a certain tolerance of error in the land-water boundary, or at least quantify the
uncertainty. The author of this thesis has also developed an (unpublished) procedure to
derive a water surface elevation based on kriging. In principle, other intensity metrics
than water depth can be derived from satellite imagery, for example flood duration and
affected area in the vicinity. Also the detected flood can be used as “stream raster”, and
a height above it can be computed, similar to the HAND index. Future studies could
explore the improvement in assimilation performance and damage estimation by the
extrapolated flood masks. However, users of the procedure should keep in mind that
the ML-based extrapolation models do not necessarily follow the laws of physics. For
example they do not enforce a closed water balance (mass conservation).

5.1.3 Q3: How much are risk estimates by state-of-the-art process-based
flood model chains influenced by process description details such as
hydrodynamic interactions?

Physical processes governing fluvial floods are more or less known in theory (e.g.
Brutsaert, 2014), and process-based models are consequently well-established in fluvial
hazard modelling. The more detailed the representation of processes is implemented,
the higher the computational demand gets, though. While scientific literature contains
plenty of studies using coupled hydrological-hydrodynamic models (e.g. de Paiva
et al.,, 2013; Hoch et al., 2017; Curran et al., 2019), the effect of hydrodynamic process
description on damage is usually not investigated. The modelled expected annual
damage (EAD) in Chapter 3 was reduced by about 50% when considering hydrodynamic
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interactions for the entire German Rhine basin. This aspect is therefore not negligible
for models on that spatial scale. Also the spatial occurrence of predicted flood damage
differs significantly when using a continuous routing approach.

Since a major catastrophic flood event has occurred in Germany, including parts
of the Rhine basin, during the time as this thesis was written, it is appropriate
to also discuss the published results in the light of this recent event. Total
compensations issued by the federal government were set at a stunning EUR
30 billion (http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_
BGB1&jumpTo—=bgbl121s4147 .pdf, accessed 18.10.2021). According to the simulations
presented in Chapter 3, numbers of such magnitude should only be expected for return
periods > 1000 years in a major catchment such as the Rhine. However, the damage did
in fact occur along much smaller tributaries (sub-basins), not along the main course of
the Rhine itself. Estimated local return periods of rainfall were mainly in the range of
100 years (in some areas up to 1000 years), and there are even historical records of a
similar magnitude flooding of the Ahr river in 1804 (Schéfer et al., 2021). Discrepancies
to the presented model results potentially arise from the following issues: (1) the
stream network considered in the model chain of Chapter 3 is not including “minor”
streams such as the Ahr, and the even smaller ones, many of which are ungauged.
(2) Flash flood processes with sediment transport and failure of protective structures
are not implemented in the hydrodynamic module. (3) The damage models do not
represent the impact of boulders or other transported objects, and completely exclude
the infrastructure sector. Destroyed bridges, roads, drainage networks, power grids, etc.,
are simply not accounted for. (4) A stochastic weather generator only produces realistic
precipitation patters when based on truly representative data. If not enough historical
data is available, or if climate change alters future precipitation, the weather generator
needs to be adjusted as well.

It is therefore evident that complexity of process description needs to be increased to
capture dynamics such as the abovementioned. Whether ML-based modelling of the
total damage could make sense for these flash flood events is probably worth further
investigation, but hinges on the availability of comprehensive data. Data collection of
damage from the event 2021 in Germany, in combination with observations of flood
extent, velocity and sediment transport, would provide a good opportunity to improve
the understanding of processes and accuracy of current models for such situations.

514 Q4: Can ML and OGD be used to construct damage models for
compound events that are difficult to describe by explicit process-based
model chains?

Model chains are already quite complex for a single hazard like fluvial floods. Similar
tools for compound or cascading events are still rare, especially when including multi-
hazard damage (Marzocchi et al., 2012; Kappes et al., 2012). A step in that direction is
the RIESGOS demonstrator of decentralized WPS models (Pittore et al., 2020). However,
the complexity and associated uncertainty of these chains is very high and difficult to
capture. How to generate realistic scenarios with return periods remains largely unclear.

Imagine how such a model chain would have to be designed to address the El Nifio
event from Chapter 4: The first element would have to be an EI Nifio rainfall generator
or historical rainfall measurements. Secondly, a landslide model would have to assess
whether the rainfall alone might trigger mass movements, and estimate the damage
thereof. A pluvial damage model would be required to capture the direct damage
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induced by rainfall on buildings, or by ponding water in the cities. Then, regular
hydrological routing and hydrodynamic modelling would be needed, but these models
would have to include sediment transport, which is a relevant driver of damage in parts
of Peru (Thouret et al., 2014). The mixed processes of flash floods, slow river floods and
long-lasting inundation from ponding water might each require an individual damage
model component. In the case of multiple hazards hitting the same place, the damage
functions would theoretically need to be adjusted based on previous damage (Gomez-
Zapata et al., 2020). It is very unlikely that sufficient empirical evidence for such state-
dependent vulnerability functions will ever be available, as the data collection would
have to take place in between the different hazard occurrences, i.e. during a time when
people are struggling with the impact of the first hazard (not necessarily expecting a
second hit).

Therefore the more direct approach developed in Chapter 4 seems worth exploring. The
explicit description of the individual processes is substituted by a statistical description
of total damage probability from a representative sample (full enumeration). It is worth
to note here again that the confidence placed in this specific analysis is backed by the
fact that the survey of damaged buildings was conducted by state authorities with the
aim to identify every damaged residential building in the country for issuing financial
compensations. We can therefore expect this dataset to be more or less unaffected by
sampling bias.

In accordance with literature on susceptibility mapping (e.g. Cao et al., 2016; Chapi et al.,
2017; Pour and Hashim, 2017; Tehrany et al., 2018), Chapter 2 has demonstrated that
inundation from a hurricane event can to some extent be modelled from topographic
and hydrographic features. In Chapter 4 it could be shown that ML models for EI Nifio
damage can obtain a skill similar to what has been reported in literature for single
hazard damage (Ettinger et al., 2016; Jakob et al., 2011; Laudan et al., 2017). The best
performance was observed for the algorithms RF and SVM. Linear models performed
poor on the entire dataset. Skill improved when subdividing the data into clusters of
similar dominant damage processes, which was possible by unsupervised techniques.
The resulting ML models can in principle be used to derive forecasts based on different
scenarios of rainfall (sum and maximum) or different land-use (urbanity, forest density,
bare soil index, etc.), however the validation would be virtually impossible without data
from further events. This hints at the main drawback of ML models: they require data,
which is often not available.

There is still a long way to go to bring such ML-based risk analyses on the level of
the model chain used in Chapter 3. More promising is the concept of an event-based
empirical damage probability map, to be used for risk communication and potentially
spatial planning. The idea is similar to a susceptibility for damaging events, as recently
proposed for landslides (Steger et al.,, 2021). In fact, there are reasons to prefer such
an approach for catastrophic compound events: Financial risk modelling definitely
has its eligibility for large-scale planning, governmental spending prioritization and
regulatory requirements on backup reserves (e.g. Sairam et al., 2021). A measure like
EAD, especially on highly aggregated scales, fails to capture the drastic consequences
of compound hazards like El Nifio floods, though. EAD can be the same for a hazard
regime of frequently occurring low impact events as for rare high impact events
(Merz et al., 2009). Also, the most vulnerable are the poorest with the lowest quality
housing — which accordingly will contribute only little monetary value in the financial
risk calculations. Engineering-type models, or statistical models predicting structural
building damage, may therefore be more adequate in these cases. The population at
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risk needs to be provided with information that allows for sustainable risk-mitigating
spatial planning and emergency preparation. Besides hazards zoning, the potential
number of uninhabitable residential houses is an important piece of information, as
it allows the local authorities to plan with sufficient amounts of emergency shelters,
storage for food, clean drinking water, and other relevant supplies. The methodology
developed in Chapter 4 might be further developed in that direction. Also, information
on critical damage processes and dangerous areas can potentially be derived from model
inspection. Such information could be of value for creating more empirically-grounded
risk maps, as opposed to relying solely on expert opinion.

5.1.5 Q5: To what extent can process understanding be derived from either of
these methods?

Physical models with clear process behaviour are termed white-boxes (e.g. Ghonchepour
et al., 2021). Hydrodynamic modelling by solving the diffusive wave equation may
be regarded as such a white-box approach. The entire RFM chain is rather a grey-
box, though, as empirical elements are included and calibration to data may introduce
unexpected effects. Nevertheless, model inspection in Chapter > clearly shows how flood
hazard and risk are shifted upstream (reduced downstream) when using a continuous
routing scheme. Plotting the risk curves spatially allows for understanding the model
behaviour. If the behaviour is accurate, such visualizations can be used to learn about
the effect of different measures on flood risk. Self-evidently, process-based models are
only as good as their internal process description. The general knowledge on the physics
of fluid dynamics has largely been derived from laboratory experiments and analytical
mathematics (Johnson, 2016).

ML models learn patterns and interaction effects from the data. Model inspection tools,
such as feature importance rankings and partial dependence plots, can then be used
to uncover the structure of the fitted models. However, the cost function used during
training and the user-defined performance metric for model selection matter. ML models
adjust their internal structure to optimize a given metric! This can consequently lead to
very different results during model inspection. In addition, it has been hypothesized that
the problem of equifinality, known from hydrological modelling, may similarly affect
ML models (Schmidt et al., 2020). Whether process understanding can be derived from
them is therefore up to debate. In the ML attitude, a model has the primary purpose
of making accurate predictions. It is not of interest whether that model discovered any
laws of nature or whether it fulfills certain mathematical properties. This also implies
that some research questions are simply not of interest to ML advocates. In the context
of flood damage models: as long as the model predicts the correct damage grade, it is
not of interest whether the cause was water depth, flow velocity, or impact of boulders —
and whether the model got the right answer for the wrong reason (Kirchner, 2006).

Model inspection is valuable when choosing a single model (or a few particular models)
to be used in an operational procedure. In that case it is of interest to know how
exactly the model functions, and if for example it contains a bias from a feature that
it is not supposed to use. Infamous examples of such effects are observed in natural
language processing models that learn racial or gender biases when trained on unfiltered
texts from internet forums (Garrido-Mufoz et al., 2021). Similarly, in the risk modelling
domain we might want to avoid model biases towards neglecting the most vulnerable
population due to low building values. Such behavior would be uncovered during
model inspection, and could subsequently be corrected.
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The question remains whether it is possible, by doing data-mining “the right way”, to
discover process understanding “in general”, according to the aim of science formulated
by Alfred North Whitehead? Zhao and Hastie (2019) sketch a way of obtaining causal
inference information from ML models using PDP, however they also mention that
this requires domain knowledge in addition, to constrain the potential effects e.g. via
a structural equation model. The problems of empirical research are even more basic,
though: When attempting to quantify the drivers of damage or hazard occurrence from
empirical data, we can mainly learn something about that particular dataset. However,
the dataset itself may not contain the answer, as Steger et al. (2021) phrased it (quoting
Tukey, 1986). The dataset reflects the occurrence of processes in a certain place and time,
with a specific sampling bias. If empirically deriving process understanding is the goal,
then comprehensive or truly representative data is necessary.

For the study presented in Chapter 2, the method t-SNE was originally used to detect
structure in the training data, and individual OCC models were inspected by PDP. These
plots did not make it into the final publication, for the following reason: The models were
trained for maximum predictive accuracy, disregarding collinearity of features, potential
autocorrelation, and representativeness of the training data. Model inspection in this
case only provides insight in the structure of specific models, which depends heavily on
the coverage of the initial flood mask and characteristics of the features and processes
in that region, as well as on the characteristics of the OCC algorithms themselves. It
does not offer general process understanding, neither about pluvial floods in general,
nor about satellite-based flood masks in general, and not even about hurricane Harvey
in general. Chapter 2 is therefore conceptually a pure ML study.

Chapter 4 gave a detailed analysis of 5 different algorithms trained in a nested cross
validation on comprehensive damage data. Class distributions were balanced in training
to focus the ML models on separating classes rather than on maximum predictive
accuracy. Data was subdivided into thematic clusters for more detailed inspection, which
greatly enhanced interpretability. The feature importance was computed for all models
consistently by feature permutation, using only features of low collinearity, and with 100
repetitions per algorithm. Results were visually merged in stacked barplots to retain as
much information as possible, and thereby avoid over-interpreting feature importance
rankings from single algorithms. PDPs were used in addition to uncover the direction of
the marginal feature effects. When making this effort, it is at least possible to gain insight
about a particular event. Most of the thematic results obtained from this data-mining
study were in line with prior expectations. Rainfall maximum was found more relevant
in urban areas and canyons, rainfall sum along low elevation rivers and in vegetated
mountain ranges. The learned patterns suggest that collapse of buildings rather occurred
under relatively low rainfall in canyons and areas with low HAND. An interesting
finding was that vulnerability appears higher in rural areas compared to urban centres.
More detailed processes might be discovered when using higher resolution data, which
was not openly available for the region. It is also worth to note that the complex models
probably detected many more interactions than have been visualized. We are simply not
able to intuitively make sense of multidimensional arrays. New tools for visualization
are needed to make the full information content of such models accessible. The machine
has already learned a lot, the additional challenge in data-mining is human learning.
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5.2 QOutlook

5.2.1 Further development of the presented research

First of all, the individual components developed in this thesis can be improved.
Satellite-based flood masks should be accompanied by spatial uncertainty or validity
layers, indicating where the sensor did not obtain a useful signal. The extrapolation
procedure by OCC offers at least two additional opportunities: it can be used for merging
satellite observations with data from social media or street cameras, and it might be
tested whether the area between several satellite images can be interpolated. Derivation
of water depth from the modelled flood extent is the next logical step. Procedures exist,
but they need to be adjusted to handle the uncertainty associated with the land-water
boundary. Probabilistic methods might be useful in this respect. This information could
then be used for rapid damage estimation.

Hydrodynamic models could make use of improved satellite-based flood masks
for calibration as well. Besides this, they need to incorporate additional damage-
relevant processes such as dike failures and sediment transport. Damage models
consequently need to be adjusted as well to capture these processes. Substituting
open channel hydrodynamic models by ML does not seem logical, as the physical
equations are known. This might be different for precipitation, subsurface hydrology,
and damage models. The merging of both worlds by physically-constrained ML is worth
investigating.

A direct shortcut from rainfall and environmental descriptors to damage via ML can
work if comprehensive data is available. The clear advantage is that the complexity
of model design is outsourced to a learning algorithm. Data of a single event is not
sufficient to evaluate model predictions, though. The concept of damage probability
maps might be further studied in regions where data from multiple events is available.
The next attempts in that direction should definitely include characteristics of the
damaged buildings, such as construction material or number of storeys. For the 2017
El Nifio event in Peru, this kind of data was not made publicly available, although it has
been recorded. There is also potential for improvement of models by using even more
complex algorithms. Particularly the spatial context should be considered in geospatial
modelling, therefore the use of Convolutional Neural Networks (CNNSs) is encouraged.
Last but not least, the target label in damage modelling is ambiguous: damage to
buildings needs to be quantified during data collection either in categories of structural
damage, or in terms of value loss. The first may be up to subjective judgement, the latter
requires an estimation of pre- and post-disaster building value, or a comprehensive list
of repair costs. It is clear that both options are fuzzy. Future research should consider
methods that deal with this ambiguity in training.

5.2.2 Data is key

Obviously, but noteworthy, data sciences approaches first and foremost require data.
The fields that have really been revolutionized by ML are those fields where truly
comprehensive data is available, for example computer vision or natural language
processing. Due to open data from satellite missions, and other large-scale geospatial
mapping projects, we are approaching this point for environmental monitoring,
including hazard observations. However, the field of damage modelling is still far
from that stage. Systematic data collection, compilation, harmonization, and potentially
data augmentation is needed to advance the development of generalized models. Open
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data is necessary to break the silos of research and establish internationally accepted
standard references. Surveys such as conducted in Peru provide the opportunity to
apply strong learning algorithms for modelling and process understanding, but such
surveys are rare. Data collection on the required scale is clearly beyond the capacity
of individual scientists. Conceivable options are either that surveys are conducted by
state authorities or insurance companies in labor-intensive fieldwork, during disaster
response and reconstruction, or that affected people report the status of their buildings
and potentially other categories of impact in an online database of standardized format,
similar to the OSM project. The response rate of such a voluntary mapping project would
probably depend on the trust in the issuing organization. Therefore a carefully designed
information campaign might be needed in addition.

5.3 Conclusion

The overall aim of this thesis was to investigate the potential and limitations of
open geospatial data and machine learning (ML) methods for improvement of flood
hazard observation, damage modelling, process understanding and for substituting or
complementing process-based risk model chains, particularly in the case of compound
events. Plenty of hazard-related geospatial information is openly available, including
digital elevation models (DEM), hydrography, land cover, precipitation, roads, building
footprints, and flood extents mapped by satellites. The latter are unfortunately of limited
quality in vegetated and urban areas, as shown for the case of hurricane Harvey in
Houston. A procedure for significantly improving these products by a secondary ML
step has been developed in this thesis. The procedure treats the data as positive and
unlabeled (PU) and uses a one class classifier (OCC) to re-learn the flood extent from
different features. Most important was topographic and hydrographic information, but
the workflow is independent of the specific data and could in the future be used
for merging satellite data with other sources of flood mapping. The opportunities for
improving hazard observations by ML are bright, as operational data collection is
already quite advanced. The focus here should be on designing creative workflows to
merge different data sources, and on testing cutting-edge algorithms.

In principle, there is no need to substitute process models by ML if the physical
equations governing the respective process are known. Such is theoretically the case for
hydrodynamics. Also process-based flood risk model chains still need to be improved to
include more damage-relevant processes, though. A continuous routing approach and
consideration of hydrodynamic interactions along the entire river system have led to
a reduction of modelled expected annual damage (EAD) by about 50%, indicating that
such process description details cannot be neglected. Still, there are more aspects that
need to be included to reproduce real events, such as dike failure and sediment transport.
Accordingly, process-based model chains can get very complex and associated with high
uncertainty, which poses the question whether such model chains could turn out to be
unfeasible for compound or cascading events.

Impacts like building damage might therefore be modelled more directly by ML
algorithms that learn complex relationships from empirical data, if the necessary amount
of training data for that purpose is available. Compound damage modelling for an
El Nifio flood event in Peru has been tested by 5 different supervised ML algorithms
trained on open data and a nationwide comprehensive damage survey. Performance
was in the range that has been reported in literature for single hazard damage models.
Damage data could be separated in thematic clusters of different dominant processes
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by unsupervised methods. The ML-based damage estimation is still far from the level
of insurance-type risk estimates obtained from a process-based model chain, but the
method could be used for risk communication and potentially for spatial planning.
Derivation of process understanding from these models was attempted by rigorous
model inspection. Key thematic results include the finding that building collapse was
not associated to intensity of rainfall, but rather low height above the nearest drainage
(HAND) or location in a canyon were informative. Also vulnerability appeared higher
in rural areas as opposed to urban centers. The topographic wetness index (TWI) was
selected as the overall most informative predictive feature. Such insights may appear
rather coarse, which reflects the spatial resolution of the open topographic data in
Peru, and challenges in visualizing the full quantitative model results. Studies aiming
at process understanding require high standards in data acquisition. Simple importance
rankings by individual algorithms trained on arbitrary data are not to be trusted in a
generalized interpretation. Comprehensive damage data such as used in this thesis is
quite exceptional. Scientists and practitioners alike have to deal with what is available
— still, in the domain of damage modelling it appears recommendable to direct more
resources towards the collection, compilation and harmonization of data. In the long run,
risk assessments from hazard to damage estimation should stand on a robust empirical
basis, so that risk management decisions can be taken with confidence.
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