Biome changes in Asia since the mid-Holocene

  • The large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate-vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere-ocean(-vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions. In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon-westerly wind transition zone, but the temporal evolution and amplitude of change stronglyThe large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate-vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere-ocean(-vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions. In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon-westerly wind transition zone, but the temporal evolution and amplitude of change strongly depend on the climate forcing. Large parts of the southern tundra are replaced by taiga during the mid-Holocene due to a warmer growing season and the boreal treeline in northern Asia is shifted northward by approx. 4 degrees in the ensemble mean, ranging from 1.5 to 6 degrees in the individual simulations, respectively. This simulated treeline shift is in agreement with pollen-based reconstructions from northern Siberia. The desert fraction in the transition zone is reduced by 21% during the mid-Holocene compared to pre-industrial due to enhanced precipitation. The desert-steppe margin is shifted westward by 5 degrees (1-9 degrees in the individual simulations). The forest biomes are expanded north-westward by 2 degrees, ranging from 0 to 4 degrees in the single simulations. These results corroborate pollen-based reconstructions indicating an extended forest area in north-central China during the mid-Holocene. According to the model, the forest-to-non-forest and steppe-to-desert changes in the climate transition zones are spatially not uniform and not linear since the mid-Holocene.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Anne Dallmeyer, Martin ClaussenORCiDGND, Jian NiORCiD, Xianyong CaoORCiDGND, Yongbo Wang, Nils Fischer, Madlene Pfeiffer, Liya Jin, Vyacheslav KhonORCiD, Sebastian Wagner, Kerstin Haberkorn, Ulrike HerzschuhORCiDGND
DOI:https://doi.org/10.5194/cp-13-107-2017
ISSN:1814-9324
ISSN:1814-9332
Title of parent work (English):Climate of the past : an interactive open access journal of the European Geosciences Union
Subtitle (English):an analysis of different transient Earth system model simulations
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Date of first publication:2017/02/09
Publication year:2017
Release date:2022/06/27
Volume:13
Issue:2
Number of pages:28
First page:107
Last Page:134
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
License (English):License LogoCreative Commons - Namensnennung 3.0 Unported
External remark:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 643
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.