Single-column data profiling

  • The research area of data profiling consists of a large set of methods and processes to examine a given dataset and determine metadata about it. Typically, different data profiling tasks address different kinds of metadata, comprising either various statistics about individual columns (Single-column Analysis) or relationships among them (Dependency Discovery). Among the basic statistics about a column are data type, header, the number of unique values (the column's cardinality), maximum and minimum values, the number of null values, and the value distribution. Dependencies involve, for instance, functional dependencies (FDs), inclusion dependencies (INDs), and their approximate versions. Data profiling has a wide range of conventional use cases, namely data exploration, cleansing, and integration. The produced metadata is also useful for database management and schema reverse engineering. Data profiling has also more novel use cases, such as big data analytics. The generated metadata describes the structure of the data at hand, howThe research area of data profiling consists of a large set of methods and processes to examine a given dataset and determine metadata about it. Typically, different data profiling tasks address different kinds of metadata, comprising either various statistics about individual columns (Single-column Analysis) or relationships among them (Dependency Discovery). Among the basic statistics about a column are data type, header, the number of unique values (the column's cardinality), maximum and minimum values, the number of null values, and the value distribution. Dependencies involve, for instance, functional dependencies (FDs), inclusion dependencies (INDs), and their approximate versions. Data profiling has a wide range of conventional use cases, namely data exploration, cleansing, and integration. The produced metadata is also useful for database management and schema reverse engineering. Data profiling has also more novel use cases, such as big data analytics. The generated metadata describes the structure of the data at hand, how to import it, what it is about, and how much of it there is. Thus, data profiling can be considered as an important preparatory task for many data analysis and mining scenarios to assess which data might be useful and to reveal and understand a new dataset's characteristics. In this thesis, the main focus is on the single-column analysis class of data profiling tasks. We study the impact and the extraction of three of the most important metadata about a column, namely the cardinality, the header, and the number of null values. First, we present a detailed experimental study of twelve cardinality estimation algorithms. We classify the algorithms and analyze their efficiency, scaling far beyond the original experiments and testing theoretical guarantees. Our results highlight their trade-offs and point out the possibility to create a parallel or a distributed version of these algorithms to cope with the growing size of modern datasets. Then, we present a fully automated, multi-phase system to discover human-understandable, representative, and consistent headers for a target table in cases where headers are missing, meaningless, or unrepresentative for the column values. Our evaluation on Wikipedia tables shows that 60% of the automatically discovered schemata are exact and complete. Considering more schema candidates, top-5 for example, increases this percentage to 72%. Finally, we formally and experimentally show the ghost and fake FDs phenomenon caused by FD discovery over datasets with missing values. We propose two efficient scores, probabilistic and likelihood-based, for estimating the genuineness of a discovered FD. Our extensive set of experiments on real-world and semi-synthetic datasets show the effectiveness and efficiency of these scores.show moreshow less
  • Das Forschungsgebiet Data Profiling besteht aus einer Vielzahl von Methoden und Prozessen, die es erlauben Datensätze zu untersuchen und Metadaten über diese zu ermitteln. Typischerweise erzeugen verschiedene Data-Profiling-Techniken unterschiedliche Arten von Metadaten, die entweder verschiedene Statistiken einzelner Spalten (Single-Column Analysis) oder Beziehungen zwischen diesen (Dependency Discovery) umfassen. Zu den grundlegenden Statistiken einer Spalte gehören unter anderem ihr Datentyp, ihr Name, die Anzahl eindeutiger Werte (Kardinalität der Spalte), Maximal- und Minimalwerte, die Anzahl an Null-Werten sowie ihre Werteverteilung. Im Falle von Abhängigkeiten kann es sich beispielsweise um funktionale Abhängigkeiten (FDs), Inklusionsabhängigkeiten (INDs) sowie deren approximative Varianten handeln. Data Profiling besitzt vielfältige Anwendungsmöglichkeiten, darunter fallen die Datenexploration, -bereinigung und -integration. Darüber hinaus sind die erzeugten Metadaten sowohl für den Einsatz in DatenbankmanagementsystemenDas Forschungsgebiet Data Profiling besteht aus einer Vielzahl von Methoden und Prozessen, die es erlauben Datensätze zu untersuchen und Metadaten über diese zu ermitteln. Typischerweise erzeugen verschiedene Data-Profiling-Techniken unterschiedliche Arten von Metadaten, die entweder verschiedene Statistiken einzelner Spalten (Single-Column Analysis) oder Beziehungen zwischen diesen (Dependency Discovery) umfassen. Zu den grundlegenden Statistiken einer Spalte gehören unter anderem ihr Datentyp, ihr Name, die Anzahl eindeutiger Werte (Kardinalität der Spalte), Maximal- und Minimalwerte, die Anzahl an Null-Werten sowie ihre Werteverteilung. Im Falle von Abhängigkeiten kann es sich beispielsweise um funktionale Abhängigkeiten (FDs), Inklusionsabhängigkeiten (INDs) sowie deren approximative Varianten handeln. Data Profiling besitzt vielfältige Anwendungsmöglichkeiten, darunter fallen die Datenexploration, -bereinigung und -integration. Darüber hinaus sind die erzeugten Metadaten sowohl für den Einsatz in Datenbankmanagementsystemen als auch für das Reverse Engineering von Datenbankschemata hilfreich. Weiterhin finden Methoden des Data Profilings immer häufiger Verwendung in neuartigen Anwendungsfällen, wie z.B. der Analyse von Big Data. Dabei beschreiben die generierten Metadaten die Struktur der vorliegenden Daten, wie diese zu importieren sind, von was sie handeln und welchen Umfang sie haben. Somit kann das Profiling von Datenbeständen als eine wichtige, vorbereitende Aufgabe für viele Datenanalyse- und Data-Mining Szenarien angesehen werden. Sie ermöglicht die Beurteilung, welche Daten nützlich sein könnten, und erlaubt es zudem die Eigenschaften eines neuen Datensatzes aufzudecken und zu verstehen. Der Schwerpunkt dieser Arbeit bildet das Single-Column Profiling. Dabei werden sowohl die Auswirkungen als auch die Extraktion von drei der wichtigsten Metadaten einer Spalte untersucht, nämlich ihrer Kardinalität, ihres Namens und ihrer Anzahl an Null-Werten. Die vorliegende Arbeit beginnt mit einer detaillierten experimentellen Studie von zwölf Algorithmen zur Kardinalitätsschätzung. Diese Studie klassifiziert die Algorithmen anhand verschiedener Kriterien und analysiert ihre Effizienz. Dabei sind die Experimente im Vergleich zu den Originalpublikationen weitaus umfassender und testen die theoretischen Garantien der untersuchten Algorithmen. Unsere Ergebnisse geben Aufschluss über Abwägungen zwischen den Algorithmen und weisen zudem auf die Möglichkeit einer parallelen bzw. verteilten Algorithmenversion hin, wodurch die stetig anwachsende Datenmenge moderner Datensätze bewältigt werden könnten. Anschließend wird ein vollautomatisches, mehrstufiges System vorgestellt, mit dem sich im Falle fehlender, bedeutungsloser oder nicht repräsentativer Kopfzeilen einer Zieltabelle menschenverständliche, repräsentative und konsistente Kopfzeilen ermitteln lassen. Unsere Auswertung auf Wikipedia-Tabellen zeigt, dass 60% der automatisch entdeckten Schemata exakt und vollständig sind. Werden darüber hinaus mehr Schemakandidaten in Betracht gezogen, z.B. die Top-5, erhöht sich dieser Prozentsatz auf 72%. Schließlich wird das Phänomen der Geist- und Schein-FDs formell und experimentell untersucht, welches bei der Entdeckung von FDs auf Datensätzen mit fehlenden Werten auftreten kann. Um die Echtheit einer entdeckten FD effizient abzuschätzen, schlagen wir sowohl eine probabilistische als auch eine wahrscheinlichkeitsbasierte Bewertungsmethode vor. Die Wirksamkeit und Effizienz beider Bewertungsmethoden zeigt sich in unseren umfangreichen Experimenten mit realen und halbsynthetischen Datensätzen.show moreshow less

Download full text files

  • SHA-512:f1fd1ffcab726ef9eb97db2d5c060f45748f45cfa8b4e60d6df165726c8c6b31df3d016a3388fd1d74dd5a1d9204eac6efd4994d5d14ead4fba05c14916e28d6

Export metadata

Metadaten
Author details:Hazar HarmouchORCiD
URN:urn:nbn:de:kobv:517-opus4-474554
DOI:https://doi.org/10.25932/publishup-47455
Reviewer(s):Felix NaumannORCiDGND, Wolfgang LehnerORCiDGND, Ziawasch AbedjanORCiDGND
Supervisor(s):Felix Naumann
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/08/17
Release date:2020/08/27
Tag:Datenqualität; Fehlende Werte; Funktionale Abhängigkeiten; Kardinalitätsschätzung; Schema-Entdeckung
Cardinality estimation; Data profiling; Data quality; Functional dependencies; Metanome; Missing values; Schema discovery
Number of pages:x, 115
RVK - Regensburg classification:ST 270
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
CCS classification:H. Information Systems
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.