Adding value to text with user-generated content
- In recent years, the ever-growing amount of documents on the Web as well as in closed systems for private or business contexts led to a considerable increase of valuable textual information about topics, events, and entities. It is a truism that the majority of information (i.e., business-relevant data) is only available in unstructured textual form. The text mining research field comprises various practice areas that have the common goal of harvesting high-quality information from textual data. These information help addressing users' information needs. In this thesis, we utilize the knowledge represented in user-generated content (UGC) originating from various social media services to improve text mining results. These social media platforms provide a plethora of information with varying focuses. In many cases, an essential feature of such platforms is to share relevant content with a peer group. Thus, the data exchanged in these communities tend to be focused on the interests of the user base. The popularity of social mediaIn recent years, the ever-growing amount of documents on the Web as well as in closed systems for private or business contexts led to a considerable increase of valuable textual information about topics, events, and entities. It is a truism that the majority of information (i.e., business-relevant data) is only available in unstructured textual form. The text mining research field comprises various practice areas that have the common goal of harvesting high-quality information from textual data. These information help addressing users' information needs. In this thesis, we utilize the knowledge represented in user-generated content (UGC) originating from various social media services to improve text mining results. These social media platforms provide a plethora of information with varying focuses. In many cases, an essential feature of such platforms is to share relevant content with a peer group. Thus, the data exchanged in these communities tend to be focused on the interests of the user base. The popularity of social media services is growing continuously and the inherent knowledge is available to be utilized. We show that this knowledge can be used for three different tasks. Initially, we demonstrate that when searching persons with ambiguous names, the information from Wikipedia can be bootstrapped to group web search results according to the individuals occurring in the documents. We introduce two models and different means to handle persons missing in the UGC source. We show that the proposed approaches outperform traditional algorithms for search result clustering. Secondly, we discuss how the categorization of texts according to continuously changing community-generated folksonomies helps users to identify new information related to their interests. We specifically target temporal changes in the UGC and show how they influence the quality of different tag recommendation approaches. Finally, we introduce an algorithm to attempt the entity linking problem, a necessity for harvesting entity knowledge from large text collections. The goal is the linkage of mentions within the documents with their real-world entities. A major focus lies on the efficient derivation of coherent links. For each of the contributions, we provide a wide range of experiments on various text corpora as well as different sources of UGC. The evaluation shows the added value that the usage of these sources provides and confirms the appropriateness of leveraging user-generated content to serve different information needs.…
- Die steigende Zahl an Dokumenten, welche in den letzten Jahren im Web sowie in geschlossenen Systemen aus dem privaten oder geschäftlichen Umfeld erstellt wurden, führte zu einem erheblichen Zuwachs an wertvollen Informationen über verschiedenste Themen, Ereignisse, Organisationen und Personen. Die meisten Informationen liegen lediglich in unstrukturierter, textueller Form vor. Das Forschungsgebiet des "Text Mining" befasst sich mit dem schwierigen Problem, hochwertige Informationen in strukturierter Form aus Texten zu gewinnen. Diese Informationen können dazu eingesetzt werden, Nutzern dabei zu helfen, ihren Informationsbedarf zu stillen. In dieser Arbeit nutzen wir Wissen, welches in nutzergenerierten Inhalten verborgen ist und aus unterschiedlichsten sozialen Medien stammt, um Text Mining Ergebnisse zu verbessern. Soziale Medien bieten eine Fülle an Informationen mit verschiedenen Schwerpunkten. Eine wesentliche Funktion solcher Medien ist es, den Nutzern zu ermöglichen, Inhalte mit ihrer Interessensgruppe zu teilen. Somit sindDie steigende Zahl an Dokumenten, welche in den letzten Jahren im Web sowie in geschlossenen Systemen aus dem privaten oder geschäftlichen Umfeld erstellt wurden, führte zu einem erheblichen Zuwachs an wertvollen Informationen über verschiedenste Themen, Ereignisse, Organisationen und Personen. Die meisten Informationen liegen lediglich in unstrukturierter, textueller Form vor. Das Forschungsgebiet des "Text Mining" befasst sich mit dem schwierigen Problem, hochwertige Informationen in strukturierter Form aus Texten zu gewinnen. Diese Informationen können dazu eingesetzt werden, Nutzern dabei zu helfen, ihren Informationsbedarf zu stillen. In dieser Arbeit nutzen wir Wissen, welches in nutzergenerierten Inhalten verborgen ist und aus unterschiedlichsten sozialen Medien stammt, um Text Mining Ergebnisse zu verbessern. Soziale Medien bieten eine Fülle an Informationen mit verschiedenen Schwerpunkten. Eine wesentliche Funktion solcher Medien ist es, den Nutzern zu ermöglichen, Inhalte mit ihrer Interessensgruppe zu teilen. Somit sind die ausgetauschten Daten in diesen Diensten häufig auf die Interessen der Nutzerbasis ausgerichtet. Die Popularität sozialer Medien wächst stetig und führt dazu, dass immer mehr inhärentes Wissen verfügbar wird. Dieses Wissen kann unter anderem für drei verschiedene Aufgabenstellungen genutzt werden. Zunächst zeigen wir, dass Informationen aus Wikipedia hilfreich sind, um Ergebnisse von Personensuchen im Web nach den in ihnen diskutierten Personen aufzuteilen. Dazu führen wir zwei Modelle zur Gruppierung der Ergebnisse und verschiedene Methoden zum Umgang mit fehlenden Wikipedia Einträgen ein, und zeigen, dass die entwickelten Ansätze traditionelle Methoden zur Gruppierung von Suchergebnissen übertreffen. Des Weiteren diskutieren wir, wie die Klassifizierung von Texten auf Basis von "Folksonomien" Nutzern dabei helfen kann, neue Informationen zu identifizieren, die ihren Interessen entsprechen. Wir konzentrieren uns insbesondere auf temporäre Änderungen in den nutzergenerierten Inhalten, um zu zeigen, wie stark ihr Einfluss auf die Qualität verschiedener "Tag"-Empfehlungsmethoden ist. Zu guter Letzt führen wir einen Algorithmus ein, der es ermöglicht, Nennungen von Echtweltinstanzen in Texten zu disambiguieren und mit ihren Repräsentationen in einer Wissensdatenbank zu verknüpfen. Das Hauptaugenmerk liegt dabei auf der effizienten Erkennung von kohärenten Verknüpfungen. Wir stellen für jeden Teil der Arbeit eine große Vielfalt an Experimenten auf diversen Textkorpora und unterschiedlichen Quellen von nutzergenerierten Inhalten an. Damit heben wir das Potential hervor, das die Nutzung jener Quellen bietet, um die unterschiedlichen Informationsbedürfnisse abzudecken.…
Author details: | Toni Grütze |
---|---|
translated title (German): | Mehrwert für Texte mittels nutzergenerierter Inhalte |
Reviewer(s): | Felix NaumannORCiDGND, Wolf-Tilo BalkeORCiDGND, Fabian Suchanek |
Publication type: | Doctoral Thesis |
Language: | English |
Year of first publication: | 2018 |
Publication year: | 2018 |
Publishing institution: | Universität Potsdam |
Granting institution: | Universität Potsdam |
Date of final exam: | 2018/05/24 |
Release date: | 2018/08/15 |
Tag: | Clusteranalyse; Entitätsverknüpfung; Klassifikation; nutzergenerierte Inhalte; text mining classification; clustering; entity linking; text mining; user-generated content |
Number of pages: | ii, 114 |
Organizational units: | Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH |
DDC classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |