Doctoral Thesis
Refine
Year of publication
Document Type
- Doctoral Thesis (6347) (remove)
Language
Keywords
- climate change (52)
- Klimawandel (51)
- Modellierung (34)
- Nanopartikel (28)
- machine learning (21)
- Synchronisation (19)
- Fernerkundung (18)
- Spracherwerb (18)
- Arabidopsis thaliana (17)
- Deutschland (17)
Institute
- Institut für Biochemie und Biologie (1012)
- Institut für Physik und Astronomie (764)
- Institut für Chemie (669)
- Institut für Geowissenschaften (493)
- Wirtschaftswissenschaften (405)
- Institut für Ernährungswissenschaft (274)
- Öffentliches Recht (247)
- Bürgerliches Recht (216)
- Historisches Institut (210)
- Institut für Informatik und Computational Science (203)
This dissertation focuses on the understanding of the optical manipulation of microgels dispersed in aqueous solution of azobenzene containing surfactant. The work consists of three parts where each part is a systematic investigation of the (1) photo-isomerization kinetics of the surfactant in complex with the microgel polymer matrix, (2) light driven diffusiosmosis (LDDO) in microgels and (3) photo-responsivity of microgel on complexation with spiropyran.
The first part comprises three publications where the first one [P1] investigates the photo-isomerization kinetics and corresponding isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged polymers or micro sized polymer networks to understand the structural response of such photo-sensitive complexes. We report that the photo-isomerization of the azobenzene-containing cationic surfactant is slower in a polymer complex compared to being purely dissolved in an aqueous solution. The surfactant aggregates near the polyelectrolyte chains at concentrations much lower than the bulk critical micelle concentration. This, along with the inhibition of the photo-isomerization kinetics due to steric hindrance within the densely packed aggregates, pushes the isomer-ratio to a higher trans-isomer concentration for all irradiation wavelengths.
The second publication [P2] combines experimental results and non-adiabatic dynamic simulations for the same surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the slowdown in photo induced trans → cis azobenzene isomerization at concentrations higher than the critical micelle concentration (CMC). The simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles and observes a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans → cis switching in micelles of the azobenzene-containing surfactants.
Finally, the third publication [P3] focusses on the kinetics of adsorption and desorption of the same surfactant within anionic microgels in the dark and under continuous irradiation. Experimental data demonstrate, that microgels can serve as a selective absorber of the trans isomers. The interaction of the isomers with the gel matrix induces a remotely controllable collapse or swelling on appropriate irradiation wavelengths. Measuring the kinetics of the microgel size response and knowing the exact isomer composition under light exposure, we calculate the adsorption rate of the trans-isomers.
The second part comprises two publications. The first publication [P4] reports on the phenomenon of light-driven diffusioosmotic (DO) long-range attractive and repulsive interactions between micro-sized objects, whose range extends several times the size of microparticles and can be adjusted to point towards or away from the particle by varying irradiation parameters such as intensity or wavelength of light. The phenomenon is fueled by the aforementioned photosensitive surfactant. The complex interaction of dynamic exchange of isomers and photo-isomerization rate yields to relative concentrations gradients of the isomers in the vicinity of micro-sized object inducing a local diffusioosmotic (DO) flow thereby making a surface act as a micropump.
The second publication [P5] exclusively aims the visualization and investigation of the DO flows generated from microgels by using small tracer particles. Similar to micro sized objects, the flow is able to push adjacent tracers over distances several times larger than microgel size. Here we report that the direction and the strength of the l-LDDO depends on the intensity, irradiation wavelength and the amount of surfactant adsorbed by the microgel. For example, the flow pattern around a microgel is directed radially outward and can be maintained quasi-indefinitely under exposure at 455 nm when the trans:cis ratio is 2:1, whereas irradiation at 365 nm, generates a radially transient flow pattern, which inverts at lower intensities.
Lastly, the third part consists of one publication [P6] which, unlike the previous works, reports on the study of the kinetics of photo- and thermo-switching of a new surfactant namely, spiropyran, upon exposure with light of different wavelengths and its interaction with p(NIPAM-AA) microgels. The surfactant being an amphiphile, switches between its ring closed spiropyran (SP) form and ring open merocyanine (MC) form which results in a change in the hydrophilic–hydrophobic balance of the surfactant as MC being a zwitterionic form along with the charged head group, generates three charges on the molecule. Therefore, the MC form of the surfactant is more hydrophilic than in the case of the neutral SP state. Here, we investigate the initial shrinkage of the gel particles via charge compensation on first exposure to SP molecules which results from the complex formation of the molecules with the gel matrix, triggering them to become photo responsive. The size and VPTT of the microgels during irradiation is shown to be a combination of heating up of the solution during light absorption by the surfactant (more pronounced in the case of UV irradiation) and the change in the hydrophobicity of the surfactant.
Point processes are a common methodology to model sets of events. From earthquakes to social media posts, from the arrival times of neuronal spikes to the timing of crimes, from stock prices to disease spreading -- these phenomena can be reduced to the occurrences of events concentrated in points. Often, these events happen one after the other defining a time--series.
Models of point processes can be used to deepen our understanding of such events and for classification and prediction. Such models include an underlying random process that generates the events. This work uses Bayesian methodology to infer the underlying generative process from observed data. Our contribution is twofold -- we develop new models and new inference methods for these processes.
We propose a model that extends the family of point processes where the occurrence of an event depends on the previous events. This family is known as Hawkes processes. Whereas in most existing models of such processes, past events are assumed to have only an excitatory effect on future events, we focus on the newly developed nonlinear Hawkes process, where past events could have excitatory and inhibitory effects. After defining the model, we present its inference method and apply it to data from different fields, among others, to neuronal activity.
The second model described in the thesis concerns a specific instance of point processes --- the decision process underlying human gaze control. This process results in a series of fixated locations in an image. We developed a new model to describe this process, motivated by the known Exploration--Exploitation dilemma. Alongside the model, we present a Bayesian inference algorithm to infer the model parameters.
Remaining in the realm of human scene viewing, we identify the lack of best practices for Bayesian inference in this field. We survey four popular algorithms and compare their performances for parameter inference in two scan path models.
The novel models and inference algorithms presented in this dissertation enrich the understanding of point process data and allow us to uncover meaningful insights.
Traditionally, mental disorders have been identified based on specific symptoms and standardized diagnostic systems such as the DSM-5 and ICD-10. However, these symptom-based definitions may only partially represent neurobiological and behavioral research findings, which could impede the development of targeted treatments. A transdiagnostic approach to mental health research, such as the Research Domain Criteria (RDoC) approach, maps resilience and broader aspects of mental health to associated components. By investigating mental disorders in a transnosological way, we can better understand disease patterns and their distinguishing and common factors, leading to more precise prevention and treatment options.
Therefore, this dissertation focuses on (1) the latent domain structure of the RDoC approach in a transnosological sample including healthy controls, (2) its domain associations to disease severity in patients with anxiety and depressive disorders, and (3) an overview of the scientific results found regarding Positive (PVS) and Negative Valence Systems (NVS) associated with mood and anxiety disorders.
The following main results were found: First, the latent RDoC domain structure for PVS and NVS, Cognitive Systems (CS), and Social Processes (SP) could be validated using self-report and behavioral measures in a transnosological sample. Second, we found transdiagnostic and disease-specific associations between those four domains and disease severity in patients with depressive and anxiety disorders. Third, the scoping review showed a sizable amount of RDoC research conducted on PVS and NVS in mood and anxiety disorders, with research gaps for both domains and specific conditions.
In conclusion, the research presented in this dissertation highlights the potential of the transnosological RDoC framework approach in improving our understanding of mental disorders. By exploring the latent RDoC structure and associations with disease severity and disease-specific and transnosological associations for anxiety and depressive disorders, this research provides valuable insights into the full spectrum of psychological functioning. Additionally, this dissertation highlights the need for further research in this area, identifying both RDoC indicators and research gaps. Overall, this dissertation represents an important contribution to the ongoing efforts to improve our understanding and the treatment of mental disorders, particularly within the commonly comorbid disease spectrum of mood and anxiety disorders.
Dielektrophorese ist die Manipulation polarisierbarer Partikel durch inhomogene elektrische Wechselfelder. In dieser Arbeit wurden drei verschiedene Enzyme durch Dielektrophorese immobilisiert und anschließend hinsichtlich ihrer katalytischen Aktivität untersucht: Meerrettichperoxidase, Cholinoxidase aus Alcaligenes sp. und Glucoseoxidase aus Aspergillus niger. Die Immobilisierung erfolgte durch Dielektrophorese auf nano-Elektrodenarrays aus Wolfram-Zylindern mit 500 nm Durchmesser oder aus Titannitrid-Ringen mit 20 nm Breite. Die Immobilisierung der Enzyme konnte fluoreszenzmikroskopisch entweder anhand der intrinsischen Fluoreszenz oder aufgrund einer Fluoreszenzmarkierung vor oder nach der Immobilisierung für alle getesteten Enzyme nachgewiesen werden. Die Messung der Enzymaktivität erfolgte quantitativ durch den direkten oder indirekten Nachweis des gebildeten Produktes oder, im Falle der Cholinoxidase, durch Beobachtung der intrinsischen Fluoreszenz des Cofaktors FAD, die vom Oxidationszustand dieses Enzyms abhängt. Für die Meerrettichperoxidase konnte so eine hohe erhaltene Enzymaktivität nach der Immobilisierung nachgewiesen werden. Die Aktivität der permanent immobilisierten Fraktion der Meerrettichperoxidase entsprach bis zu 47 % der höchstmöglichen Aktivität einer Monolage dieses Enzyms auf den Elektroden des Chips. Diese Aktivität kann als aktive, aber zufällig gegenüber der Oberfläche ausgerichtete Enzymschicht interpretiert werden. Für die permanent immobilisierte Glucoseoxidase wurde nur eine Aktivität entsprechend <1,3 % der Aktivität einer solchen Enzymschicht detektiert, während für die immobilisierte Cholinoxidase gar keine Aktivität nachgewiesen werden konnte. Die Aktivität der durch DEP immobilisierten Enzyme konnte somit quantitativ bestimmt werden. Der Anteil an erhaltener Aktivität hängt dabei stark vom verwendeten Enzym ab.
Digitalisation in industry – also called “Industry 4.0” – is seen by numerous actors as an opportunity to reduce the environmental impact of the industrial sector. The scientific assessments of the effects of digitalisation in industry on environmental sustainability, however, are ambivalent. This cumulative dissertation uses three empirical studies to examine the expected and observed effects of digitalisation in industry on environmental sustainability. The aim of this dissertation is to identify opportunities and risks of digitalisation at different system levels and to derive options for action in politics and industry for a more sustainable design of digitalisation in industry. I use an interdisciplinary, socio-technical approach and look at selected countries of the Global South (Study 1) and the example of China (all studies). In the first study (section 2, joint work with Marcel Matthess), I use qualitative content analysis to examine digital and industrial policies from seven different countries in Africa and Asia for expectations regarding the impact of digitalisation on sustainability and compare these with the potentials of digitalisation for sustainability in the respective country contexts. The analysis reveals that the documents express a wide range of vague expectations that relate more to positive indirect impacts of information and communication technology (ICT) use, such as improved energy efficiency and resource management, and less to negative direct impacts of ICT, such as electricity consumption through ICT. In the second study (section 3, joint work with Marcel Matthess, Grischa Beier and Bing Xue), I conduct and analyse interviews with 18 industry representatives of the electronics industry from Europe, Japan and China on digitalisation measures in supply chains using qualitative content analysis. I find that while there are positive expectations regarding the effects of digital technologies on supply chain sustainability, their actual use and observable effects are still limited. Interview partners can only provide few examples from their own companies which show that sustainability goals have already been pursued through digitalisation of the supply chain or where sustainability effects, such as resource savings, have been demonstrably achieved. In the third study (section 4, joint work with Peter Neuhäusler, Melissa Dachrodt and Marcel Matthess), I conduct an econometric panel data analysis. I examine the relationship between the degree of Industry 4.0, energy consumption and energy intensity in ten manufacturing sectors in China between 2006 and 2019. The results suggest that overall, there is no significant relationship between the degree of Industry 4.0 and energy consumption or energy intensity in manufacturing sectors in China. However, differences can be found in subgroups of sectors. I find a negative correlation of Industry 4.0 and energy intensity in highly digitalised sectors, indicating an efficiency-enhancing effect of Industry 4.0 in these sectors. On the other hand, there is a positive correlation of Industry 4.0 and energy consumption for sectors with low energy consumption, which could be explained by the fact that digitalisation, such as the automation of previously mainly labour-intensive sectors, requires energy and also induces growth effects. In the discussion section (section 6) of this dissertation, I use the classification scheme of the three levels macro, meso and micro, as well as of direct and indirect environmental effects to classify the empirical observations into opportunities and risks, for example, with regard to the probability of rebound effects of digitalisation at the three levels. I link the investigated actor perspectives (policy makers, industry representatives), statistical data and additional literature across the system levels and consider political economy aspects to suggest fields of action for more sustainable (digitalised) industries. The dissertation thus makes two overarching contributions to the academic and societal discourse. First, my three empirical studies expand the limited state of research at the interface between digitalisation in industry and sustainability, especially by considering selected countries in the Global South and the example of China. Secondly, exploring the topic through data and methods from different disciplinary contexts and taking a socio-technical point of view, enables an analysis of (path) dependencies, uncertainties, and interactions in the socio-technical system across different system levels, which have often not been sufficiently considered in previous studies. The dissertation thus aims to create a scientifically and practically relevant knowledge basis for a value-guided, sustainability-oriented design of digitalisation in industry.
Functional characterization of ROS-responsive genes, ANAC085 and ATR7, in Arabidopsis thaliana
(2023)
Individuals with aphasia vary in the speed and accuracy they perform sentence comprehension tasks. Previous results indicate that the performance patterns of individuals with aphasia vary between tasks (e.g., Caplan, DeDe, & Michaud, 2006; Caplan, Michaud, & Hufford, 2013a). Similarly, it has been found that the comprehension performance of individuals with aphasia varies between homogeneous test sentences within and between sessions (e.g., McNeil, Hageman, & Matthews, 2005). These studies ascribed the variability in the performance of individuals with aphasia to random noise. This conclusion would be in line with an influential theory on sentence comprehension in aphasia, the resource reduction hypothesis (Caplan, 2012). However, previous studies did not directly compare variability in language-impaired and language-unimpaired adults. Thus, it is still unclear how the variability in sentence comprehension differs between individuals with and without aphasia. Furthermore, the previous studies were exclusively carried out in English. Therefore, the findings on variability in sentence processing in English still need to be replicated in a different language.
This dissertation aims to give a systematic overview of the patterns of variability in sentence comprehension performance in aphasia in German and, based on this overview, to put the resource reduction hypothesis to the test. In order to reach the first aim, variability was considered on three different dimensions (persons, measures, and occasions) following the classification by Hultsch, Strauss, Hunter, and MacDonald (2011). At the dimension of persons, the thesis compared the performance of individuals with aphasia and language-unimpaired adults. At the dimension of measures, this work explored the performance across different sentence comprehension tasks (object manipulation, sentence-picture matching). Finally, at the dimension of occasions, this work compared the performance in each task between two test sessions. Several methods were combined to study variability to gain a large and diverse database. In addition to the offline comprehension tasks, the self-paced-listening paradigm and the visual world eye-tracking paradigm were used in this work.
The findings are in line with the previous results. As in the previous studies, variability in sentence comprehension in individuals with aphasia emerged between test sessions and between tasks. Additionally, it was possible to characterize the variability further using hierarchical Bayesian models. For individuals with aphasia, it was shown that both between-task and between-session variability are unsystematic. In contrast to that, language-unimpaired individuals exhibited systematic differences between measures and between sessions. However, these systematic differences occurred only in the offline tasks. Hence, variability in sentence comprehension differed between language-impaired and language-unimpaired adults, and this difference could be narrowed down to the offline measures.
Based on this overview of the patterns of variability, the resource reduction hypothesis was evaluated. According to the hypothesis, the variability in the performance of individuals with aphasia can be ascribed to random fluctuations in the resources available for sentence processing. Given that the performance of the individuals with aphasia varied unsystematically, the results support the resource reduction hypothesis. Furthermore, the thesis proposes that the differences in variability between language-impaired and language-unimpaired adults can also be explained by the resource reduction hypothesis. More specifically, it is suggested that the systematic changes in the performance of language-unimpaired adults are due to decreasing fluctuations in available processing resources. In parallel, the unsystematic variability in the performance of individuals with aphasia could be due to constant fluctuations in available processing resources. In conclusion, the systematic investigation of variability contributes to a better understanding of language processing in aphasia and thus enriches aphasia research.