### Refine

#### Document Type

- Article (1)
- Doctoral Thesis (1)

#### Language

- English (2)

#### Is part of the Bibliography

- yes (2)

#### Keywords

#### Institute

According to Radzikowski’s celebrated results, bisolutions of a wave operator on a globally hyperbolic spacetime are of the Hadamard form iff they are given by a linear combination of distinguished parametrices i2(G˜aF−G˜F+G˜A−G˜R) in the sense of Duistermaat and Hörmander [Acta Math. 128, 183–269 (1972)] and Radzikowski [Commun. Math. Phys. 179, 529 (1996)]. Inspired by the construction of the corresponding advanced and retarded Green operator GA, GR as done by Bär, Ginoux, and Pfäffle {Wave Equations on Lorentzian Manifolds and Quantization [European Mathematical Society (EMS), Zürich, 2007]}, we construct the remaining two Green operators GF, GaF locally in terms of Hadamard series. Afterward, we provide the global construction of i2(G˜aF−G˜F), which relies on new techniques such as a well-posed Cauchy problem for bisolutions and a patching argument using Čech cohomology. This leads to global bisolutions of the Hadamard form, each of which can be chosen to be a Hadamard two-point-function, i.e., the smooth part can be adapted such that, additionally, the symmetry and the positivity condition are exactly satisfied.

Quantum field theory on curved spacetimes is understood as a semiclassical approximation of some quantum theory of gravitation, which models a quantum field under the influence of a classical gravitational field, that is, a curved spacetime. The most remarkable effect predicted by this approach is the creation of particles by the spacetime itself, represented, for instance, by Hawking's evaporation of black holes or the Unruh effect. On the other hand, these aspects already suggest that certain cornerstones of Minkowski quantum field theory, more precisely a preferred vacuum state and, consequently, the concept of particles, do not have sensible counterparts within a theory on general curved spacetimes. Likewise, the implementation of covariance in the model has to be reconsidered, as curved spacetimes usually lack any non-trivial global symmetry. Whereas this latter issue has been resolved by introducing the paradigm of locally covariant quantum field theory (LCQFT), the absence of a reasonable concept for distinct vacuum and particle states on general curved spacetimes has become manifest even in the form of no-go-theorems.
Within the framework of algebraic quantum field theory, one first introduces observables, while states enter the game only afterwards by assigning expectation values to them. Even though the construction of observables is based on physically motivated concepts, there is still a vast number of possible states, and many of them are not reasonable from a physical point of view. We infer that this notion is still too general, that is, further physical constraints are required. For instance, when dealing with a free quantum field theory driven by a linear field equation, it is natural to focus on so-called quasifree states. Furthermore, a suitable renormalization procedure for products of field operators is vitally important. This particularly concerns the expectation values of the energy momentum tensor, which correspond to distributional bisolutions of the field equation on the curved spacetime. J. Hadamard's theory of hyperbolic equations provides a certain class of bisolutions with fixed singular part, which therefore allow for an appropriate renormalization scheme.
By now, this specification of the singularity structure is known as the Hadamard condition and widely accepted as the natural generalization of the spectral condition of flat quantum field theory. Moreover, due to Radzikowski's celebrated results, it is equivalent to a local condition, namely on the wave front set of the bisolution. This formulation made the powerful tools of microlocal analysis, developed by Duistermaat and Hörmander, available for the verification of the Hadamard property as well as the construction of corresponding Hadamard states, which initiated much progress in this field. However, although indispensable for the investigation in the characteristics of operators and their parametrices, microlocal analyis is not practicable for the study of their non-singular features and central results are typically stated only up to smooth objects. Consequently, Radzikowski's work almost directly led to existence results and, moreover, a concrete pattern for the construction of Hadamard bidistributions via a Hadamard series. Nevertheless, the remaining properties (bisolution, causality, positivity) are ensured only modulo smooth functions.
It is the subject of this thesis to complete this construction for linear and formally self-adjoint wave operators acting on sections in a vector bundle over a globally hyperbolic Lorentzian manifold. Based on Wightman's solution of d'Alembert's equation on Minkowski space and the construction for the advanced and retarded fundamental solution, we set up a Hadamard series for local parametrices and derive global bisolutions from them. These are of Hadamard form and we show existence of smooth bisections such that the sum also satisfies the remaining properties exactly.