Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Is part of the Bibliography
- yes (4)
Keywords
- Ahr (1)
- Ahr River (1)
- Extreme value statistics (1)
- Extremwertstatistik (1)
- Gefahrenkarten (1)
- Hochwasser (1)
- Hydrologie (1)
- Klimawandel (1)
- catchment (1)
- catchment response (1)
Die Hochwasserkatastrophe im Juli 2021 in Westdeutschland erfordert eine kritische Diskussion über die Abschätzung der Hochwassergefährdung, Aktualisierung von Hochwassergefahrenkarten und Kommunikation von extremen Hochwasserszenarien. In der vorliegenden Arbeit wurde die Extremwertstatistik für die jährlichen maximalen Spitzenabflüsse am Pegel Altenahr im Ahrtal mit und ohne Berücksichtigung historischer Hochwasser berechnet und verglichen. Die Schätzung der Wiederkehrperiode für das aktuelle Hochwasser mittels Generalisierter Extremwertverteilung (GEV) unter Berücksichtigung historischer Hochwasser schwankt zwischen etwa 2.600 und über 58.700 Jahren (90%-Konfidenzintervall) mit einem Median bei etwa 8.600 Jahren, wogegen die Schätzung, die nur auf der systematisch gemessenen Abflusszeitreihe von 74 Jahren basiert, theoretisch eine Wiederkehrperiode von über 100 Millionen Jahren ergeben würde. Die Berücksichtigung der historischen Hochwasser führt zu einer dramatischen Änderung der Hochwasserquan-
tile, die für eine Gefahrenkartierung zugrunde gelegt werden. Die Anpassung der GEV an die Zeitreihe mit historischen Hochwassern zeigt dennoch, dass das GEV-Modell möglicherweise die Grundgesamtheit der Hochwasser im Ahrtal nicht adäquat abbilden kann. Es könnte sich im vorliegenden Fall um eine gemischte Stichprobe handeln, in der die extremen Hochwasser im Vergleich zu kleineren Ereignissen durch besondere Prozesse hervorgerufen werden. Somit könnten die Wahrscheinlichkeiten von extremen Hochwassern deutlich größer sein, als aus dem GEV-Modell hervorgeht. Hier sollte in Zukunft die Anwendung einer prozessbasierten Mischverteilung
untersucht werden. Der Vergleich von amtlichen Gefahrenkarten zu Extremhochwassern (HQextrem) im Ahrtal mit den Überflutungsflächen vom Juli 2021
zeigt eine deutliche Diskrepanz in den betroffenen Gebieten und die Notwendigkeit, die Grundlagen zur Erstellung der Extremszenarien zu überdenken. Die hydrodynamisch-numerischen Simulationen von 1.000-jährlichen Hochwassern (HQ1000) unter Berücksichtigung historischer Ereignisse und des größten historischen Hochwassers 1804 können die Gefährdung des Juli-Hochwassers 2021 deutlich besser widerspiegeln, wenngleich auch diese beiden Szenarien die Überflutungsflächen unterschätzen. Besondere Effekte wie die Verklausung von Brücken und die geomorphologischen Änderungen im Flussschlauch führten zu noch größeren Überflutungs- flächen im Juli 2021, als die Simulationsergebnisse zeigten. Basierend auf dieser Analyse wird eine einheitliche Festlegung von HQextrem bei Hochwassergefahrenkartierungen in Deutschland vorgeschlagen, die sich an höheren Hochwasserquantilen im Bereich von HQ1000 orientiert. Zusätzlich sollen simulationsbasierte Rekonstruktionen von den größten verlässlich dokumentierten historischen Hochwassern und/oder synthetische Worst-Case-Szenarien in den Hochwassergefahrenkarten gesondert dargestellt werden. Damit wird ein wichtiger Beitrag geleistet, um die potenziell betroffene Bevölkerung und das Katastrophenmanagement vor Überraschungen durch sehr seltene und extreme Hochwasser in Zukunft besser zu schützen.
In some catchments, the distribution of annual maximum streamflow shows heavy tail behavior, meaning the occurrence probability of extreme events is higher than if the upper tail decayed exponentially. Neglecting heavy tail behavior can lead to an underestimation of the likelihood of extreme floods and the associated risk. Partly contradictory results regarding the controls of heavy tail behavior exist in the literature and the knowledge is still very dispersed and limited. To better understand the drivers, we analyze the upper tail behavior and its controls for 480 catchments in Germany and Austria over a period of more than 50 years. The catchments span from quickly reacting mountain catchments to large lowland catchments, allowing for general conclusions. We compile a wide range of event and catchment characteristics and investigate their association with an indicator of the tail heaviness of flood distributions, namely the shape parameter of the GEV distribution. Following univariate analyses of these characteristics, along with an evaluation of different aggregations of event characteristics, multiple linear regression models, as well as random forests, are constructed. A novel slope indicator, which represents the relation between the return period of flood peaks and event characteristics, captures the controls of heavy tails best. Variables describing the catchment response are found to dominate the heavy tail behavior, followed by event precipitation, flood seasonality, and catchment size. The pre-event moisture state in a catchment has no relevant impact on the tail heaviness even though it does influence flood magnitudes.
Following an unprecedented drought, Australia's 2019/2020 "Black Summer" fire season caused severe damage, gravely impacting both humans and ecosystems, and increasing susceptibility to other hazards. Heavy precipitation in early 2020 led to flooding and runoff that entrained ash and soil in burned areas, increasing sediment concentration in rivers, and reducing water quality. We exemplify this hazard cascade in a catchment in New South Wales by mapping burn severity, flood, and rainfall recurrence; estimating changes in soil erosion; and comparing them with river turbidity data. We show that following the extreme drought and wildfires, even moderate rain and floods led to undue increases in soil erosion and reductions in water quality. While natural risk analysis and planning commonly focuses on a single hazard, we emphasize the need to consider the entire hazard cascade, and highlight the impacts of ongoing climate change beyond its direct effect on wildfires.
Plain Language Summary In 2019/2020, a chain of natural hazards impacted Australia's East Coast. Following the severest drought since weather records began, record-breaking wildfires known as the "Black Summer" ravaged the region for months. In early 2020, the rainfall that extinguished the last of these fires caused further damage, as the burned soils repelled much of the rain. Water took the exposed soil and charred vegetation with it on its way to the rivers, flooding streets and polluting drinking water. We show an example of this cascade of hazards in a single river catchment. We found that after the wildfires, even moderate rainfall caused floods, increased soil erosion, and reduced water quality drastically. Natural risk analyses mostly focus on single types of events in isolation. However, this hazard cascade shows that, especially in the face of ongoing climate change, scientists and decision makers need to consider events not just by themselves, but connected with each other.
River floods are among the most devastating natural hazards worldwide. As their generation is highly dependent on climatic conditions, their magnitude and frequency are projected to be affected by future climate change. Therefore, it is crucial to study the ways in which a changing climate will, and already has, influenced flood generation, and thereby flood hazard. Additionally, it is important to understand how other human influences - specifically altered land cover - affect flood hazard at the catchment scale.
The ways in which flood generation is influenced by climatic and land cover conditions differ substantially in different regions. The spatial variability of these effects needs to be taken into account by using consistent datasets across large scales as well as applying methods that can reflect this heterogeneity. Therefore, in the first study of this cumulative thesis a complex network approach is used to find 10 clusters of similar flood behavior among 4390 catchments in the conterminous United States. By using a consistent set of 31 hydro-climatological and land cover variables, and training a separate Random Forest model for each of the clusters, the regional controls on flood magnitude trends between 1960-2010 are detected. It is shown that changes in rainfall are the most important drivers of these trends, while they are regionally controlled by land cover conditions.
While climate change is most commonly associated with flood magnitude trends, it has been shown to also influence flood timing. This can lead to trends in the size of the area across which floods occur simultaneously, the flood synchrony scale. The second study is an analysis of data from 3872 European streamflow gauges and shows that flood synchrony scales have increased in Western Europe and decreased in Eastern Europe. These changes are attributed to changes in flood generation, especially a decreasing relevance of snowmelt. Additionally, the analysis shows that both the absolute values and the trends of flood magnitudes and flood synchrony scales are positively correlated. If these trends persist in the future and are not accounted for, the combined increases of flood magnitudes and flood synchrony scales can exceed the capacities of disaster relief organizations and insurers.
Hazard cascades are an additional way through which climate change can influence different aspects of flood hazard. The 2019/2020 wildfires in Australia, which were preceded by an unprecedented drought and extinguished by extreme rainfall that led to local flooding, present an opportunity to study the effects of multiple preceding hazards on flood hazard. All these hazards are individually affected by climate change, additionally complicating the interactions within the cascade. By estimating and analyzing the burn severity, rainfall magnitude, soil erosion and stream turbidity in differently affected tributaries of the Manning River catchment, the third study shows that even low magnitude floods can pose a substantial hazard within a cascade.
This thesis shows that humanity is affecting flood hazard in multiple ways with spatially and temporarily varying consequences, many of which were previously neglected (e.g. flood synchrony scale, hazard cascades). To allow for informed decision making in risk management and climate change adaptation, it will be crucial to study these aspects across the globe and to project their trajectories into the future. The presented methods can depict the complex interactions of different flood drivers and their spatial variability, providing a basis for the assessment of future flood hazard changes. The role of land cover should be considered more in future flood risk modelling and management studies, while holistic, transferable frameworks for hazard cascade assessment will need to be designed.