### Refine

#### Keywords

- conormal symbol (3)
- Atiyah-Bott obstruction (2)
- edge-degenerate operators (2)
- elliptic families (2)
- elliptic family (2)
- relative index (2)
- symmetry conditions (2)
- edge symbol (1)
- elliptic problem (1)
- exterior tensor product (1)

Contents: Chapter 7: The Index Problemon Manifolds with Singularities Preface 7.1. The Simplest Index Formulas 7.1.1. General properties of the index 7.1.2. The index of invariant operators on the cylinder 7.1.3. Relative index formulas 7.1.4. The index of general operators on the cylinder 7.1.5. The index of operators of the form 1 + G with a Green operator G 7.1.6. The index of operators of the form 1 + G on manifolds with edges 7.1.7. The index on bundles with smooth base and fiber having conical points 7.2. The Index Problem for Manifolds with Isolated Singularities 7.2.1. Statement of the index splitting problem 7.2.2. The obstruction to the index splitting 7.2.3. Computation of the obstruction in topological terms 7.2.4. Examples. Operators with symmetries 7.3. The Index Problem for Manifolds with Edges 7.3.1. The index excision property 7.3.2. The obstruction to the index splitting 7.4. Bibliographical Remarks

Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. Hörmander’s definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah–Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks

Contents: Chapter 3: Eta Invariant and the Spectral Flow 3.1. Introduction 3.2. The Classical Spectral Flow 3.2.1. Definition and main properties 3.2.2. The spectral flow formula for periodic families 3.3. The Atiyah–Patodi–Singer Eta Invariant 3.3.1. Definition of the eta invariant 3.3.2. Variation under deformations of the operator 3.3.3. Homotopy invariance. Examples 3.4. The Eta Invariant of Families with Parameter (Melrose’s Theory) 3.4.1. A trace on the algebra of parameter-dependent operators 3.4.2. Definition of the Melrose eta invariant 3.4.3. Relationship with the Atiyah–Patodi–Singer eta invariant 3.4.4. Locality of the derivative of the eta invariant. Examples 3.5. The Spectral Flow of Families of Parameter-Dependent Operators 3.5.1. Meromorphic operator functions. Multiplicities of singular points 3.5.2. Definition of the spectral flow 3.6. Higher Spectral Flows 3.6.1. Spectral sections 3.6.2. Spectral flow of homotopies of families of self-adjoint operators 3.6.3. Spectral flow of homotopies of families of parameter-dependent operators 3.7. Bibliographical Remarks

Contents: Chapter 5: Manifolds with Isolated Singularities 5.1. Differential Operators and the Geometry of Singularities 5.1.1. How do isolated singularities arise? Examples 5.1.2. Definition and methods for the description of manifolds with isolated singularities 5.1.3. Bundles. The cotangent bundle 5.2. Asymptotics of Solutions, Function Spaces,Conormal Symbols 5.2.1. Conical singularities 5.2.2. Cuspidal singularities 5.3. A Universal Representation of Degenerate Operators and the Finiteness Theorem 5.3.1. The cylindrical representation 5.3.2. Continuity and compactness 5.3.3. Ellipticity and the finiteness theorem 5.4. Calculus of ΨDO 5.4.1. General ΨDO 5.4.2. The subalgebra of stabilizing ΨDO 5.4.3. Ellipticity and the finiteness theorem

Contents: Chapter 6: Elliptic Theory on Manifolds with Edges Introduction 6.1. Motivation and Main Constructions 6.1.1. Manifolds with edges 6.1.2. Edge-degenerate differential operators 6.1.3. Symbols 6.1.4. Elliptic problems 6.2. Pseudodifferential Operators 6.2.1. Edge symbols 6.2.2. Pseudodifferential operators 6.2.3. Quantization 6.3. Elliptic Morphisms and the Finiteness Theorem 6.3.1. Matrix Green operators 6.3.2. General morphisms 6.3.3. Ellipticity, Fredholm property, and smoothness Appendix A. Fiber Bundles and Direct Integrals A.1. Local theory A.2. Globalization A.3. Versions of the Definition of the Norm

For elliptic problems on manifolds with edges, we construct index formulas in form of a sum of homotopy invariant contributions of the strata (the interior of the manifold and the edge). Both terms are the indices of elliptic operators, one of which acts in spaces of sections of finite-dimensional vector bundles on a compact closed manifold and the other in spaces of sections of infinite-dimensional vector bundles over the edge.

Contents: Chapter 1: Localization (Surgery) in Elliptic Theory 1.1. The Index Locality Principle 1.1.1. What is locality? 1.1.2. A pilot example 1.1.3. Collar spaces 1.1.4. Elliptic operators 1.1.5. Surgery and the relative index theorem 1.2. Surgery in Index Theory on Smooth Manifolds 1.2.1. The Booß–Wojciechowski theorem 1.2.2. The Gromov–Lawson theorem 1.3. Surgery for Boundary Value Problems 1.3.1. Notation 1.3.2. General boundary value problems 1.3.3. A model boundary value problem on a cylinder 1.3.4. The Agranovich–Dynin theorem 1.3.5. The Agranovich theorem 1.3.6. Bojarski’s theorem and its generalizations 1.4. (Micro)localization in Lefschetz theory 1.4.1. The Lefschetz number 1.4.2. Localization and the contributions of singular points 1.4.3. The semiclassical method and microlocalization 1.4.4. The classical Atiyah–Bott–Lefschetz theorem

When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.