### Refine

#### Has Fulltext

- no (281) (remove)

#### Year of publication

#### Document Type

- Article (272)
- Monograph/Edited Volume (8)
- Other (1)

#### Keywords

- Complex networks (4)
- Event synchronization (2)
- Synchronization (2)
- synchronization (2)
- 3D medical image analysis (1)
- African climate (1)
- Algebraic geometry (1)
- Anisotropy (1)
- Bifurcation parameters (1)
- Biomass (1)

#### Institute

- Institut für Physik und Astronomie (209)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (39)
- Institut für Erd- und Umweltwissenschaften (14)
- Institut für Psychologie (11)
- Institut für Biochemie und Biologie (4)
- Institut für Linguistik / Allgemeine Sprachwissenschaft (3)
- Department Psychologie (2)
- Institut für Geowissenschaften (2)
- Institut für Informatik und Computational Science (2)
- Institut für Sportmedizin und Prävention (1)

We investigate the bifurcation structures in a two-dimensional parameter space (PS) of a parametrically excited system with two degrees of freedom both analytically and numerically. By means of the Renyi entropy of second order K-2, which is estimated from recurrence plots, we uncover that regions of chaotic behavior are intermingled with many complex periodic windows, such as shrimp structures in the PS. A detailed numerical analysis shows that, the stable solutions lose stability either via period doubling, or via intermittency when the parameters leave these shrimps in different directions, indicating different bifurcation properties of the boundaries. The shrimps of different sizes offer promising ways to control the dynamics of such a complex system.

Aims. Sunspot distribution in the northern and southern solar hemispheres exibit striking synchronous behaviour on the scale of a Schwabe cycle. However, sometimes the bilateral symmetry of the Butterfly diagram relative to the solar equatorial plane breaks down. The investigation of this phenomenon is important to explaining the almost-periodic behaviour of solar cycles. Methods. We use cross-recurrence plots for the study of the time-varying phase asymmetry of the northern and southern hemisphere and compare our results with the latitudinal distribution of the sunspots. Results. We observe a long-term persistence of phase leading in one of the hemispheres, which lasts almost 4 solar cycles and probably corresponds to the Gleissberg cycle. Long-term variations in the hemispheric-leading do not demonstrate clear periodicity but are strongly anti-correlated with the long-term variations in the magnetic equator.

How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.

Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with a large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of a few parameters

We investigate noise-controlled resonant response of active media to weak periodic forcing, both in excitable and oscillatory regimes. In the excitable regime, we find that noise-induced irregular wave structures can be reorganized into frequency-locked resonant patterns by weak signals with suitable frequencies. The resonance occurs due to a matching condition between the signal frequency and the noise-induced inherent time scale of the media. m:1 resonant regions similar to the Arnold tongues in frequency locking of self-sustained oscillatory media are observed. In the self-sustained oscillatory regime, noise also controls the oscillation frequency and reshapes significantly the Arnold tongues. The combination of noise and weak signal thus could provide an efficient tool to manipulate active extended systems in experiments

We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior with respect to the collective dynamics of the network. Oscillators with more connections (hubs) are synchronized more closely by the collective dynamics and constitute the dynamical core of the network. The numerical observation of this hierarchical synchronization is supported with an analysis based on a mean field approximation and the master stability function. (C) 2006 American Institute of Physics

Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators, where the coupling strength of a node from its neighbors develops adaptively according to the local synchronization property between the node and its neighbors. We find that when complete synchronization is achieved, the coupling strength becomes weighted and correlated with the topology due to a hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive process enhances significantly the synchronizability of the networks, which could have meaningful implications in the manipulation of dynamical networks

Noise-sustained and controlled synchronization of stirred excitable media by external forcing
(2005)

Most of the previous studies on constructive effects of noise in spatially extended systems have focused on static media, e.g., of the reaction diffusion type. Because many active chemical or biological processes occur in a fluid environment with mixing, we investigate here the interplay among noise, excitability, mixing and external forcing in excitable media advected by a chaotic flow, in a two-dimensional FitzHugh-Nagumo model described by a set of reaction- advection-diffusion equations. In the absence of external forcing, noise may generate sustained coherent oscillations of the media in a range of noise intensities and stirring rates. We find that these noise-sustained oscillations can be synchronized by external periodic signals much smaller than the threshold. Analysis of the locking regions in the parameter space of the signal period, stirring rate and noise intensity reveals that the mechanism underlying the synchronization behaviour is a matching between the time scales of the forcing signal and the noise-sustained oscillations. The results demonstrate that, in the presence of a suitable level of noise, the stirred excitable media act as self-sustained oscillatory systems and become much easier to be entrained by weak external forcing. Our results may be verified in experiments and are useful to understand the synchronization of population dynamics of oceanic ecological systems by annual cycles

Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.

Sensory information entering the nervous system follows independent paths of processing such that specific features are individually detected. However, sensory perception, awareness, and cognition emerge from the combination of information. Here we have analyzed the corticocortical network of the cat, looking for the anatomical substrate which permits the simultaneous segregation and integration of information in the brain. We find that cortical communications are mainly governed by three topological factors of the underlying network: (i) a large density of connections, (ii) segregation of cortical areas into clusters, and (iii) the presence of highly connected hubs aiding the multisensory processing and integration. Statistical analysis of the shortest paths reveals that, while information is highly accessible to all cortical areas, the complexity of cortical information processing may arise from the rich and intricate alternative paths in which areas can influence each other.

Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator
(2010)

We investigate the influence of additive Gaussian white noise on two different bistable self-sustained oscillators: Duffing-Van der Pol oscillator with hard excitation and a model of a synthetic genetic oscillator. In the deterministic case, both oscillators are characterized with a coexistence of a stable limit cycle and a stable equilibrium state. We find that under the influence of noise, their dynamics can be well characterized through the concept of stochastic bifurcation, consisting in a qualitative change of the stationary amplitude distribution. For the Duffing-Van der Pol oscillator analytical results, obtained for a quasiharmonic approach, are compared with the result of direct computer simulations. In particular, we show that the dynamics is different for isochronous and anisochronous systems. Moreover, we find that the increase of noise intensity in the isochronous regime leads to a narrowing of the spectral line. This effect is similar to coherence resonance. However, in the case of anisochronous systems, this effect breaks down and a new phenomenon, anisochronous-based stochastic bifurcation occurs.

The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the cells in the various types.

This paper discusses translocation features of the 20S proteasome in order to explain typical proteasome length distributions. We assume that the protein transport depends significantly on the fragment length with some optimal length which is transported most efficiently. By means of a simple one-channel model, we show that this hypothesis can explain both the one- and the three-peak length distributions found in experiments. A possible mechanism of such translocation is provided by so-called fluctuation-driven transport.

We study several algorithms to simulate bone mass loss in two-dimensional and three-dimensional computed tomography bone images. The aim is to extrapolate and predict the bone loss, to provide test objects for newly developed structural measures, and to understand the physical mechanisms behind the bone alteration. Our bone model approach differs from those already reported in the literature by two features. First, we work with original bone images, obtained by computed tomography (CT); second, we use structural measures of complexity to evaluate bone resorption and to compare it with the data provided by CT. This gives us the possibility to test algorithms of bone resorption by comparing their results with experimentally found dependencies of structural measures of complexity, as well as to show efficiency of the complexity measures in the analysis of bone models. For two-dimensional images we suggest two algorithms, a threshold algorithm and a virtual slicing algorithm. The threshold algorithm simulates bone resorption on a boundary between bone and marrow, representing an activity of osteoclasts. The virtual slicing algorithm uses a distribution of the bone material between several virtually created slices to achieve statistically correct results, when the bone-marrow transition is not clearly defined. These algorithms have been tested for original CT 10 mm thick vertebral slices and for simulated 10 mm thick slices constructed from ten I mm thick slices. For three-dimensional data, we suggest a variation of the threshold algorithm and apply it to bone images. The results of modeling have been compared with CT images using structural measures of complexity in two- and three-dimensions. This comparison has confirmed credibility of a virtual slicing modeling algorithm for two-dimensional data and a threshold algorithm for three-dimensional data

Control of noise-induced oscillations of a pendulum with a rondomly vibrating suspension axis
(1997)

We have recently reported the phenomenon of doubly stochastic resonance [Phys. Rev. Lett. 85, 227 (2000)], a synthesis of noise-induced transition and stochastic resonance. The essential feature of this phenomenon is that multiplicative noise induces a bimodality and additive noise causes stochastic resonance behavior in the induced structure. In the present paper we outline possible applications of this effect and design a simple lattice of electronic circuits for the experimental realization of doubly stochastic resonance.

We report on the effect of vibrational resonance in a spatially extended system of coupled noisy oscillators under the action of two periodic forces, a low-frequency one (signal) and a high-frequency one (carrier). Vibrational resonance manifests itself in the fact that for optimally selected values of high-frequency force amplitude, the response of the system to a low-frequency signal is optimal. This phenomenon is a synthesis of two effects, a noise- induced phase transition leading to bistability, and a conventional vibrational resonance, resulting in the optimization of signal processing. Numerical simulations, which demonstrate this effect for an extended system, can be understood by means of a zero-dimensional "effective" model. The behavior of this "effective" model is also confirmed by an experimental realization of an electronic circuit.

Doubly stochastic resonance
(2000)

We report the effect of doubly stochastic resonance which appears in nonlinear extended systems if the influence of noise is twofold: A multiplicative noise induces bimodality of the mean field of the coupled network and an independent additive noise governs the dynamic behavior in response to small periodic driving. For optimally selected values of the additive noise intensity stochastic resonance is observed, which is manifested by a maximal coherence between the dynamics of the mean field and the periodic input. Numerical simulations of the signal-to-noise ratio and theoretical results from an effective two state model are in good quantitative agreement.

We show that external fluctuations are able to induce propagation of harmonic signals through monostable media. This property is based on the phenomenon of doubly stochastic resonance, where the joint action of multiplicative noise and spatial coupling induces bistability in an otherwise monostable extended medium, and additive noise resonantly enhances the response of the system to a harmonic forcing. Under these conditions, propagation of the harmonic signal through the unforced medium i observed for optimal intensities of the two noises. This noise-induced propagation is studied and quantified in a simple model of coupled nonlinear electronic circuits.

Human comment is studied using data from 'tianya' which is one of the most popular on-line social systems in China. We found that the time interval between two consecutive comments on the same topic, called inter-event time, follows a power-law distribution. This result shows that there is no characteristic decay time on a topic. It allows for very long periods without comments that separate bursts of intensive comments. Furthermore, the frequency of a different ID commenting on a topic also follows a power-law distribution. It indicates that there are some "hubs" in the topic who lead the direction of the public opinion. Based on the personal comments habit, a model is introduced to explain these phenomena. The numerical simulations of the model fit well with the empirical results. Our findings are helpful for discovering regular patterns of human behavior in on-line society and the evolution of the public opinion on the virtual as well as real society.

Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc.

The response of scale-free networks with community structure to external stimuli is studied. By disturbing some nodes with different strategies, it is shown that the robustness of this kind of network can be enhanced due to the existence of communities in the networks. Some of the response patterns are found to coincide with topological communities. We show that such phenomena also occur in the cat brain network which is an example of a scale-free like network with community structure. Our results provide insights into the relationship between network topology and the functional organization in complex networks from another viewpoint.

In this Letter, we show that coherence and phase synchronization analysis are sensitive but not specific in detecting the correct class of underlying dynamics. We propose procedures to increase specificity and demonstrate the power of the approach by application to paradigmatic dynamic model systems. (c) 2006 Elsevier B.V. All rights reserved

Ventricular tachycardia or fibrillation (VT-VF) as fatal cardiac arrhythmias are the main factors triggering sudden cardiac death. The objective of this study is to find early signs of sustained VT-VF in patients with an implanted cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to a normal rhythm via strong defibrillatory shocks; additionally, they store the 1000 beat-to-beat intervals immediately before the onset of a life-threatening arrhythmia. We study these 1000 beat-to-beat intervals of 17 chronic heart failure ICD patients before the onset of a life-threatening arrhythmia and at a control time, i.e., without a VT-VF event. To characterize these rather short data sets, we calculate heart rate variability parameters from the time and frequency domain, from symbolic dynamics as well as the finite-time growth rates. We find that neither the time nor the frequency domain parameters show significant differences between the VT-VF and the control time series. However, two parameters from symbolic dynamics as well as the finite-time growth rates discriminate significantly both groups. These findings could be of importance in algorithms for next generation ICD's to improve the diagnostics and therapy of VT-VF.

The main intention of this contribution is to discuss different nonlinear approaches to heart rate and blood pressure variability analysis for a better understanding of the cardiovascular regulation. We investigate measures of complexity which are based on symbolic dynamics, renormalised entropy and the finite time growth rates. The dual sequence method to estimate the baroreflex sensitivity and the maximal correlation method to estimate the nonlinear coupling between time series are employed for analysing bivariate data. The latter appears to be a suitable method to estimate the strength of the nonlinear coupling and the coupling direction. Heart rate and blood pressure data from clinical pilot studies and from very large clinical studies are analysed. We demonstrate that parameters from nonlinear dynamics are useful for risk stratification after myocardial infarction, for the prediction of life-threatening cardiac events even in short time series, and for modelling the relationship between heart rate and blood pressure regulation. These findings could be of importance for clinical diagnostics, in algorithms for risk stratification, and for therapeutic and preventive tools of next generation implantable cardioverter defibrillators.

Standard time and frequency parameters of heart rate variability (HRV) describe only linear and periodic behaviour, whereas more complex relationships cannot be recognised. A method that may be capable of assessing more complex properties is the non-linear measure of 'renormalised entropy.' A new concept of the method, RE(AR), has been developed, based on a non-linear renormalisation of autoregressive spectral distributions. To test the hypothesis that renormalised entropy may improve the result of high-risk stratification after myocardial infarction, it is applied to a clinical pilot study (41 subjects) and to prospective data of the St George's Hospital post- infarction database (572 patients). The study shows that the new RE(AR) method is more reproducible and more stable in time than a previously introduced method (p<0.001). Moreover, the results of the study confirm the hypothesis that on average, the survivors have negative values of RE(AR) (-0.11+/-0.18), whereas the non-survivors have positive values (0.03+/-0.22, p<0.01). Further, the study shows that the combination of an HRV triangular index and RE(AR) leads to a better prediction of sudden arrhythmic death than standard measurements of HRV. In summary, the new RE(AR) method is an independent measure in HRV analysis that may be suitable for risk stratification in patients after myocardial infarction.

Observational data of natural systems, as measured in medical measurements are typically quite different from those obtained in laboratories. Due to the peculiarities of these data, wellknown characteristics, such as power spectra or fractal dimension, often do not provide a suitable description. To study such data, we present here some measures of complexity, which are basing on symbolic dynamics. Firstly, a motivation for using symbolic dynamics and measures of complexity in data analysis based on the logistic map is given and next, two applications to medical data are shown. We demonstrate that symbolic dynamics is a useful tool for the risk assessment of patients after myocardial infarction as well as for the evaluation of th e architecture of human cancellous bone.

The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: " Is the normal heart rate 'chaotic' due to respiration?"