### Refine

#### Document Type

- Article (3) (remove)

#### Keywords

- NBO analysis (3) (remove)

#### Institute

- Institut fĂĽr Chemie (3) (remove)

The proportion of the axial conformer increases in the ax reversible arrow eq equilibrium of cyclohexyl acetates (RCOOC(6)H(11), R reversible arrow Me, Et, iPr, tBu, CH(2)Cl, CHCl(2), CO(3). CH(2)Br, CHBr(2), CBr(3)) with the increasing size of the acyloxy substitution. The nature of this unexpected steric substituent effect, which is opposite to general stereochemical concepts, was studied by means of ab kiln MO method, accompanied by NBO and isodesmic calculations. NBO parameters seem to be good descriptors for quantitative prediction of the experimental Delta G degrees value of the title conformational equilibrium. The origin and propagation of the substituent effect of the polar substitutions (CH(2)Cl, CHCl(2), CCl(3), CH(2)Br, CHBr(2), CBr(3)) differ, however, from those of the pure alkyl (Me, Et, iPr, tBu) substitutions. The Delta G degrees value of the polar derivatives depends on the qC8 charges, on the occupation of the sigma(center dot)(C1-07) orbital and on the hyperconjugative pi(center dot)(c=O) -> sigma(center dot)(C10-X) and sigma(center dot)(C10-X) -> pi(center dot)(c=O) interactions. The substituent sensitivity of these NBC parameters for the two conformers differ to the effect that the ax reversible arrow eq equilibrium is shifted to the left side with increasing electron withdrawing character of the acyloxy group. The Delta G degrees values of the alkyl derivatives are interpreted in terms of the calculated dipole moments. The destabilization in the non-polar medium (the experimental Delta G degrees values used were measured in CD(2)Cl(2)) due to the enhanced dipolar character is more prominent in the case of the equatorial alkyl conformers. As the consequence, the ax reversible arrow eq equilibrium is shifted to the left despite the increasing size of the R group when going from Me to tBu substitution.

The conformational equilibria of 3-methyl-3-silathiane 5, 3-fluoro-3-methyl-3-silathiane 6 and 1-fluoro-1-methyl-1- silacyclohexane 7 have been studied using low temperature C-13 NMR spectroscopy and theoretical calculations. The conformer ratio at 103 K was measured to be about 5(ax):5(eq) - 15:85, 6(ax):6(eq)-50:50 and 7(ax):7(eq)-25:75. The equatorial preference of the methyl group in 5 (0.35 kcal mol(-1)) is much less than in 3-methylthiane 9 (1.40 kcal mol(-1)) but somewhat greater than in 1-methyl-1-silacyclohexane 1 (0.23 kcal mol(-1)). Compounds 5-7 have low barriers to ring inversion: 5.65 (ax -> eq) and 6.0 kcal mol(-1) (eq -> ax) (5), 4.6 kcal mol(-1) (6), 5.1 kcal mol(-1) (Me-ax -> Me-eq), and 5.4 kcal mol(-1) (Me-eq -> Me-ax) (7). Steric effects cannot explain the observed conformational preferences, like equal population of the two conformers of 6, or different conformer ratio for 5 and 7. Actually, by employing the NBO analysis, in particular, considering the second order perturbation energies, vicinal stereoelectronic interactions between the Si-X and adjacent C-H, C-S, and C-C bonds proved responsible.

The validity of the Taft equation: log(k(R)/k(CH3)) = rho*sigma* + delta E-S was studied with the aid of NBO computational results concerning cyclohexyl esters RCOOC6H11 [R = Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec-Butyl, tert-Butyl, Neopentyl, CH(CH2CH3)(2), CH(CH3)C(CH3)(3), C(CH3)(2)CH2CH3, C(CH3)(2)C(CH3)(3), CH(CH3)(Np), CH(iPr)(tBu), C(Me)(Et)(iPr), C(Et)(2)(tBu) or C(Et)(iPr)(tBu)]. It was proved that the sigma*(alkyl) value is a composite substitutent constant including the polar and steric contributions. A novel computational sigma(q)* substituent constant scale is presented based on the NBO atomic charges of the alpha-carbon and the computational total steric exchange energies E(ster) of the cyclohexyl esters specified above. The method used offers a useful way to calculate sigma*(alkyl) values for alkyl groups for which experimental Taft's polar sigma* parameters are not available.