### Refine

#### Has Fulltext

- yes (466) (remove)

#### Year of publication

#### Document Type

- Preprint (374)
- Doctoral Thesis (46)
- Postprint (24)
- Article (11)
- Monograph/Edited Volume (7)
- Conference Proceeding (2)
- Master's Thesis (2)

#### Language

- English (432)
- German (30)
- French (3)
- Multiple languages (1)

#### Keywords

- index (11)
- boundary value problems (10)
- elliptic operators (9)
- Fredholm property (8)
- cluster expansion (8)
- K-theory (7)
- manifolds with singularities (7)
- pseudodifferential operators (7)
- relative index (6)
- Atiyah-Patodi-Singer theory (5)

#### Institute

- Institut für Mathematik (466) (remove)

The XI international conference Stochastic and Analytic Methods in Mathematical Physics was held in Yerevan 2 – 7 September 2019 and was dedicated to the memory of the great mathematician Robert Adol’fovich Minlos, who passed away in January 2018.
The present volume collects a large majority of the contributions presented at the conference on the following domains of contemporary interest: classical and quantum statistical physics, mathematical methods in quantum mechanics, stochastic analysis, applications of point processes in statistical mechanics. The authors are specialists from Armenia, Czech Republic, Denmark, France, Germany, Italy, Japan, Lithuania, Russia, UK and Uzbekistan.
A particular aim of this volume is to offer young scientists basic material in order to inspire their future research in the wide fields presented here.

Continuous insight into biological processes has led to the development of large-scale, mechanistic systems biology models of pharmacologically relevant networks. While these models are typically designed to study the impact of diverse stimuli or perturbations on multiple system variables, the focus in pharmacological research is often on a specific input, e.g., the dose of a drug, and a specific output related to the drug effect or response in terms of some surrogate marker.
To study a chosen input-output pair, the complexity of the interactions as well as the size of the models hinders easy access and understanding of the details of the input-output relationship.
The objective of this thesis is the development of a mathematical approach, in specific a model reduction technique, that allows (i) to quantify the importance of the different state variables for a given input-output relationship, and (ii) to reduce the dynamics to its essential features -- allowing for a physiological interpretation of state variables as well as parameter estimation in the statistical analysis of clinical data. We develop a model reduction technique using a control theoretic setting by first defining a novel type of time-limited controllability and observability gramians for nonlinear systems. We then show the superiority of the time-limited generalised gramians for nonlinear systems in the context of balanced truncation for a benchmark system from control theory.
The concept of time-limited controllability and observability gramians is subsequently used to introduce a state and time-dependent quantity called the input-response (ir) index that quantifies the importance of state variables for a given input-response relationship at a particular time.
We subsequently link our approach to sensitivity analysis, thus, enabling for the first time the use of sensitivity coefficients for state space reduction. The sensitivity based ir-indices are given as a product of two sensitivity coefficients. This allows not only for a computational more efficient calculation but also for a clear distinction of the extent to which the input impacts a state variable and the extent to which a state variable impacts the output.
The ir-indices give insight into the coordinated action of specific state variables for a chosen input-response relationship.
Our developed model reduction technique results in reduced models that still allow for a mechanistic interpretation in terms of the quantities/state variables of the original system, which is a key requirement in the field of systems pharmacology and systems biology and distinguished the reduced models from so-called empirical drug effect models. The ir-indices are explicitly defined with respect to a reference trajectory and thereby dependent on the initial state (this is an important feature of the measure). This is demonstrated for an example from the field of systems pharmacology, showing that the reduced models are very informative in their ability to detect (genetic) deficiencies in certain physiological entities. Comparing our novel model reduction technique to the already existing techniques shows its superiority.
The novel input-response index as a measure of the importance of state variables provides a powerful tool for understanding the complex dynamics of large-scale systems in the context of a specific drug-response relationship. Furthermore, the indices provide a means for a very efficient model order reduction and, thus, an important step towards translating insight from biological processes incorporated in detailed systems pharmacology models into the population analysis of clinical data.

Quantum field theory on curved spacetimes is understood as a semiclassical approximation of some quantum theory of gravitation, which models a quantum field under the influence of a classical gravitational field, that is, a curved spacetime. The most remarkable effect predicted by this approach is the creation of particles by the spacetime itself, represented, for instance, by Hawking's evaporation of black holes or the Unruh effect. On the other hand, these aspects already suggest that certain cornerstones of Minkowski quantum field theory, more precisely a preferred vacuum state and, consequently, the concept of particles, do not have sensible counterparts within a theory on general curved spacetimes. Likewise, the implementation of covariance in the model has to be reconsidered, as curved spacetimes usually lack any non-trivial global symmetry. Whereas this latter issue has been resolved by introducing the paradigm of locally covariant quantum field theory (LCQFT), the absence of a reasonable concept for distinct vacuum and particle states on general curved spacetimes has become manifest even in the form of no-go-theorems.
Within the framework of algebraic quantum field theory, one first introduces observables, while states enter the game only afterwards by assigning expectation values to them. Even though the construction of observables is based on physically motivated concepts, there is still a vast number of possible states, and many of them are not reasonable from a physical point of view. We infer that this notion is still too general, that is, further physical constraints are required. For instance, when dealing with a free quantum field theory driven by a linear field equation, it is natural to focus on so-called quasifree states. Furthermore, a suitable renormalization procedure for products of field operators is vitally important. This particularly concerns the expectation values of the energy momentum tensor, which correspond to distributional bisolutions of the field equation on the curved spacetime. J. Hadamard's theory of hyperbolic equations provides a certain class of bisolutions with fixed singular part, which therefore allow for an appropriate renormalization scheme.
By now, this specification of the singularity structure is known as the Hadamard condition and widely accepted as the natural generalization of the spectral condition of flat quantum field theory. Moreover, due to Radzikowski's celebrated results, it is equivalent to a local condition, namely on the wave front set of the bisolution. This formulation made the powerful tools of microlocal analysis, developed by Duistermaat and Hörmander, available for the verification of the Hadamard property as well as the construction of corresponding Hadamard states, which initiated much progress in this field. However, although indispensable for the investigation in the characteristics of operators and their parametrices, microlocal analyis is not practicable for the study of their non-singular features and central results are typically stated only up to smooth objects. Consequently, Radzikowski's work almost directly led to existence results and, moreover, a concrete pattern for the construction of Hadamard bidistributions via a Hadamard series. Nevertheless, the remaining properties (bisolution, causality, positivity) are ensured only modulo smooth functions.
It is the subject of this thesis to complete this construction for linear and formally self-adjoint wave operators acting on sections in a vector bundle over a globally hyperbolic Lorentzian manifold. Based on Wightman's solution of d'Alembert's equation on Minkowski space and the construction for the advanced and retarded fundamental solution, we set up a Hadamard series for local parametrices and derive global bisolutions from them. These are of Hadamard form and we show existence of smooth bisections such that the sum also satisfies the remaining properties exactly.

Data assimilation has been an active area of research in recent years, owing to its wide utility. At the core of data assimilation are filtering, prediction, and smoothing procedures. Filtering entails incorporation of measurements' information into the model to gain more insight into a given state governed by a noisy state space model. Most natural laws are governed by time-continuous nonlinear models. For the most part, the knowledge available about a model is incomplete; and hence uncertainties are approximated by means of probabilities. Time-continuous filtering, therefore, holds promise for wider usefulness, for it offers a means of combining noisy measurements with imperfect model to provide more insight on a given state.
The solution to time-continuous nonlinear Gaussian filtering problem is provided for by the Kushner-Stratonovich equation. Unfortunately, the Kushner-Stratonovich equation lacks a closed-form solution. Moreover, the numerical approximations based on Taylor expansion above third order are fraught with computational complications. For this reason, numerical methods based on Monte Carlo methods have been resorted to. Chief among these methods are sequential Monte-Carlo methods (or particle filters), for they allow for online assimilation of data. Particle filters are not without challenges: they suffer from particle degeneracy, sample impoverishment, and computational costs arising from resampling.
The goal of this thesis is to:— i) Review the derivation of Kushner-Stratonovich equation from first principles and its extant numerical approximation methods, ii) Study the feedback particle filters as a way of avoiding resampling in particle filters, iii) Study joint state and parameter estimation in time-continuous settings, iv) Apply the notions studied to linear hyperbolic stochastic differential equations.
The interconnection between Itô integrals and stochastic partial differential equations and those of Stratonovich is introduced in anticipation of feedback particle filters. With these ideas and motivated by the variants of ensemble Kalman-Bucy filters founded on the structure of the innovation process, a feedback particle filter with randomly perturbed innovation is proposed. Moreover, feedback particle filters based on coupling of prediction and analysis measures are proposed. They register a better performance than the bootstrap particle filter at lower ensemble sizes.
We study joint state and parameter estimation, both by means of extended state spaces and by use of dual filters. Feedback particle filters seem to perform well in both cases. Finally, we apply joint state and parameter estimation in the advection and wave equation, whose velocity is spatially varying. Two methods are employed: Metropolis Hastings with filter likelihood and a dual filter comprising of Kalman-Bucy filter and ensemble Kalman-Bucy filter. The former performs better than the latter.

One method of embedding groups into skew fields was introduced by A. I. Mal'tsev and B. H. Neumann (cf. [18, 19]). If G is an ordered group and F is a skew field, the set F((G)) of formal power series over F in G with well-ordered support forms a skew field into which the group ring F[G] can be embedded. Unfortunately it is not suficient that G is left-ordered since F((G)) is only an F-vector space in this case as there is no natural way to define a multiplication on F((G)). One way to extend the original idea onto left-ordered groups is to examine the endomorphism ring of F((G)) as explored by N. I. Dubrovin (cf. [5, 6]). It is possible to embed any crossed product ring F[G; η, σ] into the endomorphism ring of F((G)) such that each non-zero element of F[G; η, σ] defines an automorphism of F((G)) (cf. [5, 10]). Thus, the rational closure of F[G; η, σ] in the endomorphism ring of F((G)), which we will call the Dubrovin-ring of F[G; η, σ], is a potential candidate for a skew field of fractions of F[G; η, σ]. The methods of N. I. Dubrovin allowed to show that specific classes of groups can be embedded into a skew field. For example, N. I. Dubrovin contrived some special criteria, which are applicable on the universal covering group of SL(2, R). These methods have also been explored by J. Gräter and R. P. Sperner (cf. [10]) as well as N.H. Halimi and T. Ito (cf. [11]). Furthermore, it is of interest to know if skew fields of fractions are unique. For example, left and right Ore domains have unique skew fields of fractions (cf. [2]). This is not the general case as for example the free group with 2 generators can be embedded into non-isomorphic skew fields of fractions (cf. [12]). It seems likely that Ore domains are the most general case for which unique skew fields of fractions exist. One approach to gain uniqueness is to restrict the search to skew fields of fractions with additional properties. I. Hughes has defined skew fields of fractions of crossed product rings F[G; η, σ] with locally indicable G which fulfill a special condition. These are called Hughes-free skew fields of fractions and I. Hughes has proven that they are unique if they exist [13, 14]. This thesis will connect the ideas of N. I. Dubrovin and I. Hughes. The first chapter contains the basic terminology and concepts used in this thesis. We present methods provided by N. I. Dubrovin such as the complexity of elements in rational closures and special properties of endomorphisms of the vector space of formal power series F((G)). To combine the ideas of N.I. Dubrovin and I. Hughes we introduce Conradian left-ordered groups of maximal rank and examine their connection to locally indicable groups. Furthermore we provide notations for crossed product rings, skew fields of fractions as well as Dubrovin-rings and prove some technical statements which are used in later parts. The second chapter focuses on Hughes-free skew fields of fractions and their connection to Dubrovin-rings. For that purpose we introduce series representations to interpret elements of Hughes-free skew fields of fractions as skew formal Laurent series. This 1 Introduction allows us to prove that for Conradian left-ordered groups G of maximal rank the statement "F[G; η, σ] has a Hughes-free skew field of fractions" implies "The Dubrovin ring of F [G; η, σ] is a skew field". We will also prove the reverse and apply the results to give a new prove of Theorem 1 in [13]. Furthermore we will show how to extend injective ring homomorphisms of some crossed product rings onto their Hughes-free skew fields of fractions. At last we will be able to answer the open question whether Hughes--free skew fields are strongly Hughes-free (cf. [17, page 53]).

In the thesis there are constructed new quantizations for pseudo-differential boundary value problems (BVPs) on manifolds with edge. The shape of operators comes from Boutet de Monvel’s calculus which exists on smooth manifolds with boundary. The singular case, here with edge and boundary, is much more complicated. The present approach simplifies the operator-valued symbolic structures by using suitable Mellin quantizations on infinite stretched model cones of wedges with boundary. The Mellin symbols themselves are, modulo smoothing ones, with asymptotics, holomorphic in the complex Mellin covariable. One of the main results is the construction of parametrices of elliptic elements in the corresponding operator algebra, including elliptic edge conditions.

Die Lehre von wissenschaftlichem Arbeiten stellt einen zentralen Aspekt in forschungsorientierten Studiengängen wie der Informatik dar. Trotz diverser Angebote werden mittel- und langfristig Mängel in der
Arbeitsqualität von Studierenden sichtbar. Dieses Paper analysiert daher das Profil der Studierenden, deren Anwendung des wissenschaftlichen Arbeitens, und das Angebot von Proseminaren zum Thema „Einführung in das wissenschaftliche Arbeiten“ einer deutschen Universität. Die Ergebnisse mehrerer Erhebungen zeigen dabei diverse Probleme bei Studierenden auf, u. a. bei dem Prozessverständnis, dem Zeitmanagement und der Kommunikation.

In diesem Artikel werden die Ergebnisse einer explorativen Datenanalyse über die Studierendenperformance in Klausur- und Hausaufgaben eines Einführungskurses der Theoretischen Informatik vorgestellt. Da bisher empirisch wenig untersucht ist, welche Probleme Studierenden in den Einführungskursen haben und die Durchfallquoten in diesen Kursen sehr hoch sind, soll auf diesem Weg ein Überblick gegeben werden. Die Ergebnisse zeigen, dass alle Studierenden unabhängig von ihrer Klausurnote die niedrigste Performance in den Klausur- und Hausaufgaben aufweisen, in denen formale Beweise gefordert sind. Dieses Ergebnis stärkt die Vermutung, dass didaktische
Ansätze und Maßnahmen sich insbesondere auf das Erlernen formaler Beweismethoden fokussieren sollten, um Informatik-Studierende nachhaltiger dabei zu unterstützen, in Theoretischer Informatik erfolgreich zu sein.

Was ist Data Science?
(2018)

In Zusammenhang mit den Entwicklungen der vergangenen Jahre, insbesondere in den Bereichen Big Data, Datenmanagement und Maschinenlernen, hat sich der Umgang mit Daten und deren Analyse wesentlich weiterentwickelt. Mittlerweile wird die Datenwissenschaft als eigene Disziplin angesehen, die auch immer stärker durch entsprechende Studiengänge an Hochschulen repräsentiert wird. Trotz dieser zunehmenden Bedeutung ist jedoch oft unklar, welche konkreten Inhalte mit ihr in Verbindung stehen, da sie in verschiedensten Ausprägungen auftritt. In diesem Beitrag werden daher die hinter der Data Science stehenden informatischen Inhalte durch eine qualitative Analyse der Modulhandbücher etablierter Studiengänge aus diesem Bereich ermittelt und so ein Beitrag zur Charakterisierung dieser Disziplin geleistet. Am Beispiel der Entwicklung eines Data-Literacy-Kompetenzmodells, die als Ausblick skizziert wird, wird die Bedeutung dieser Charakterisierung für die weitere Forschung expliziert.

Empirische Untersuchungen von Lückentext-Items zur Beherrschung der Syntax einer Programmiersprache
(2018)

Lückentext-Items auf der Basis von Programmcode können eingesetzt werden, um Kenntnisse in der Syntax einer Programmiersprache zu prüfen, ohne dazu komplexe Programmieraufgaben zu stellen, deren Bearbeitung weitere Kompetenzen erfordert. Der vorliegende Beitrag dokumentiert den Einsatz von insgesamt zehn derartigen Items in einer universitären Erstsemestervorlesung zur Programmierung mit Java. Es werden sowohl Erfahrungen mit der Konstruktion der Items als auch empirische Daten aus dem Einsatz diskutiert. Der Beitrag zeigt dadurch insbesondere die Herausforderungen bei der Konstruktion valider Instrumente zur Kompetenzmessung in der Programmierausbildung auf. Die begrenzten und teilweise vorläufigen Ergebnisse zur Qualität der erzeugten Items legen trotzdem nahe, dass Erstellung und Einsatz entsprechender Items möglich ist und einen Beitrag zur Kompetenzmessung leisten kann.