### Refine

#### Document Type

- Monograph/Edited Volume (5)
- Preprint (4)

On the existence of smooth solutions of the Dirichlet problem for hyperbolic differential equations
(1998)

Contents: 1 Introduction. Denfitions and Discussions 2 Solvability of the Cauchy Type Functional Equations 2.1 The Case of a P-configuration 2.2 The Case of a Z-configuration 2.3 Multiplicative Cauchy type functional equations 3 Problems in Analysis Reducing to Cauchy Type Functional Equations 3.1 Some problems in Integral Geometry and Cauchy Functional Equations 3.2 First Boundary Problem for Hyperbolic Differential Equations and Cauchy Type Functional Equations 4 Functional Equations Determining Polynomials

Contents: 1 Introduction 2 Statement of the problem and definitions 3 The main results 4 Proof of theorem 2 4.1 Reduction of problem (2) to functional - integral equations 4.2 The uniqueness of a solution of equation (2) 4.3 The existence of a solution of equation (2) 5 Proof of theorem 1 6 Proof of theorem 3 7 First boundary problem for hyperbolic differential equations 7.1 Statement of the problem 7.2 The formulation of the result and a sketch of the proof