### Refine

#### Has Fulltext

- yes (2) (remove)

#### Document Type

- Doctoral Thesis (2) (remove)

#### Keywords

- Bayesian networks (2) (remove)

Even though quite different in occurrence and consequences, from a modeling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding: uncertainty about the modeling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Nevertheless deterministic approaches are still widely used in natural hazard assessments, holding the risk of underestimating the hazard with disastrous effects. The all-round probabilistic framework of Bayesian networks constitutes an attractive alternative. In contrast to deterministic proceedings, it treats response variables as well as explanatory variables as random variables making no difference between input and output variables. Using a graphical representation Bayesian networks encode the dependency relations between the variables in a directed acyclic graph: variables are represented as nodes and (in-)dependencies between variables as (missing) edges between the nodes. The joint distribution of all variables can thus be described by decomposing it, according to the depicted independences, into a product of local conditional probability distributions, which are defined by the parameters of the Bayesian network. In the framework of this thesis the Bayesian network approach is applied to different natural hazard domains (i.e. seismic hazard, flood damage and landslide assessments). Learning the network structure and parameters from data, Bayesian networks reveal relevant dependency relations between the included variables and help to gain knowledge about the underlying processes. The problem of Bayesian network learning is cast in a Bayesian framework, considering the network structure and parameters as random variables itself and searching for the most likely combination of both, which corresponds to the maximum a posteriori (MAP score) of their joint distribution given the observed data. Although well studied in theory the learning of Bayesian networks based on real-world data is usually not straight forward and requires an adoption of existing algorithms. Typically arising problems are the handling of continuous variables, incomplete observations and the interaction of both. Working with continuous distributions requires assumptions about the allowed families of distributions. To "let the data speak" and avoid wrong assumptions, continuous variables are instead discretized here, thus allowing for a completely data-driven and distribution-free learning. An extension of the MAP score, considering the discretization as random variable as well, is developed for an automatic multivariate discretization, that takes interactions between the variables into account. The discretization process is nested into the network learning and requires several iterations. Having to face incomplete observations on top, this may pose a computational burden. Iterative proceedings for missing value estimation become quickly infeasible. A more efficient albeit approximate method is used instead, estimating the missing values based only on the observations of variables directly interacting with the missing variable. Moreover natural hazard assessments often have a primary interest in a certain target variable. The discretization learned for this variable does not always have the required resolution for a good prediction performance. Finer resolutions for (conditional) continuous distributions are achieved with continuous approximations subsequent to the Bayesian network learning, using kernel density estimations or mixtures of truncated exponential functions. All our proceedings are completely data-driven. We thus avoid assumptions that require expert knowledge and instead provide domain independent solutions, that are applicable not only in other natural hazard assessments, but in a variety of domains struggling with uncertainties.

Organizations try to gain competitive advantages, and to increase customer satisfaction. To ensure the quality and efficiency of their business processes, they perform business process management. An important part of process management that happens on the daily operational level is process controlling. A prerequisite of controlling is process monitoring, i.e., keeping track of the performed activities in running process instances. Only by process monitoring can business analysts detect delays and react to deviations from the expected or guaranteed performance of a process instance. To enable monitoring, process events need to be collected from the process environment. When a business process is orchestrated by a process execution engine, monitoring is available for all orchestrated process activities. Many business processes, however, do not lend themselves to automatic orchestration, e.g., because of required freedom of action. This situation is often encountered in hospitals, where most business processes are manually enacted. Hence, in practice it is often inefficient or infeasible to document and monitor every process activity. Additionally, manual process execution and documentation is prone to errors, e.g., documentation of activities can be forgotten. Thus, organizations face the challenge of process events that occur, but are not observed by the monitoring environment. These unobserved process events can serve as basis for operational process decisions, even without exact knowledge of when they happened or when they will happen. An exemplary decision is whether to invest more resources to manage timely completion of a case, anticipating that the process end event will occur too late. This thesis offers means to reason about unobserved process events in a probabilistic way. We address decisive questions of process managers (e.g., "when will the case be finished?", or "when did we perform the activity that we forgot to document?") in this thesis. As main contribution, we introduce an advanced probabilistic model to business process management that is based on a stochastic variant of Petri nets. We present a holistic approach to use the model effectively along the business process lifecycle. Therefore, we provide techniques to discover such models from historical observations, to predict the termination time of processes, and to ensure quality by missing data management. We propose mechanisms to optimize configuration for monitoring and prediction, i.e., to offer guidance in selecting important activities to monitor. An implementation is provided as a proof of concept. For evaluation, we compare the accuracy of the approach with that of state-of-the-art approaches using real process data of a hospital. Additionally, we show its more general applicability in other domains by applying the approach on process data from logistics and finance.