### Refine

#### Has Fulltext

- yes (13) (remove)

#### Year of publication

- 2014 (13) (remove)

#### Document Type

- Preprint (13) (remove)

#### Keywords

- singular perturbation (2)
- Betriebssysteme (1)
- Carrera Digital D132 (1)
- Echtzeit (1)
- Erfahrungsbericht (1)
- Fredholm property (1)
- Hölder-type source condition (1)
- Infinite-dimensional SDE (1)
- LEGO Mindstorms EV3 (1)
- Lamé system (1)

#### Institute

In today’s life, embedded systems are ubiquitous. But they differ from traditional desktop systems in many aspects – these include predictable timing behavior (real-time), the management of scarce resources (memory, network), reliable communication protocols, energy management, special purpose user-interfaces (headless operation), system configuration, programming languages (to support software/hardware co-design), and modeling techniques. Within this technical report, authors present results from the lecture “Operating Systems for Embedded Computing” that has been offered by the “Operating Systems and Middleware” group at HPI in Winter term 2013/14. Focus of the lecture and accompanying projects was on principles of real-time computing. Students had the chance to gather practical experience with a number of different OSes and applications and present experiences with near-hardware programming. Projects address the entire spectrum, from bare-metal programming to harnessing a real-time OS to exercising the full software/hardware co-design cycle. Three outstanding projects are at the heart of this technical report. Project 1 focuses on the development of a bare-metal operating system for LEGO Mindstorms EV3. While still a toy, it comes with a powerful ARM processor, 64 MB of main memory, standard interfaces, such as Bluetooth and network protocol stacks. EV3 runs a version of 1 1 Introduction Linux. Sources are available from Lego’s web site. However, many devices and their driver software are proprietary and not well documented. Developing a new, bare-metal OS for the EV3 requires an understanding of the EV3 boot process. Since no standard input/output devices are available, initial debugging steps are tedious. After managing these initial steps, the project was able to adapt device drivers for a few Lego devices to an extent that a demonstrator (the Segway application) could be successfully run on the new OS. Project 2 looks at the EV3 from a different angle. The EV3 is running a pretty decent version of Linux- in principle, the RT_PREEMPT patch can turn any Linux system into a real-time OS by modifying the behavior of a number of synchronization constructs at the heart of the OS. Priority inversion is a problem that is solved by protocols such as priority inheritance or priority ceiling. Real-time OSes implement at least one of the protocols. The central idea of the project was the comparison of non-real-time and real-time variants of Linux on the EV3 hardware. A task set that showed effects of priority inversion on standard EV3 Linux would operate flawlessly on the Linux version with the RT_PREEMPT-patch applied. If only patching Lego’s version of Linux was that easy... Project 3 takes the notion of real-time computing more seriously. The application scenario was centered around our Carrera Digital 132 racetrack. Obtaining position information from the track, controlling individual cars, detecting and modifying the Carrera Digital protocol required design and implementation of custom controller hardware. What to implement in hardware, firmware, and what to implement in application software – this was the central question addressed by the project.

We establish in this paper the existence of weak solutions of infinite-dimensional shift invariant stochastic differential equations driven by a Brownian term. The drift function is very general, in the sense that it is supposed to be neither small or continuous, nor Markov. On the initial law we only assume that it admits a finite specific entropy. Our result strongly improves the previous ones obtained for free dynamics with a small perturbative drift. The originality of our method leads in the use of the specific entropy as a tightness tool and on a description of such stochastic differential equation as solution of a variational problem on the path space.

The zero-noise limit of differential equations with singular coefficients is investigated for the first time in the case when the noise is a general alpha-stable process. It is proved that extremal solutions are selected and the probability of selection is computed. Detailed analysis of the characteristic function of an exit time form on the half-line is performed, with a suitable decomposition in small and large jumps adapted to the singular drift.

This work is devoted to the convergence analysis of a modified Runge-Kutta-type iterative regularization method for solving nonlinear ill-posed problems under a priori and a posteriori stopping rules. The convergence rate results of the proposed method can be obtained under Hölder-type source-wise condition if the Fréchet derivative is properly scaled and locally Lipschitz continuous. Numerical results are achieved by using the Levenberg-Marquardt and Radau methods.

Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set A in R^d. We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of A plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.

We consider a general class of finite dimensional deterministic dynamical systems with finitely many local attractors each of which supports a unique ergodic probability measure, which includes in particular the class of Morse–Smale systems in any finite dimension. The dynamical system is perturbed by a multiplicative non-Gaussian heavytailed Lévy type noise of small intensity ε > 0. Specifically we consider perturbations leading to a Itô, Stratonovich and canonical (Marcus) stochastic differential equation. The respective asymptotic first exit time and location problem from each of the domains of attractions in case of inward pointing vector fields in the limit of ε-> 0 has been investigated by the authors. We extend these results to domains with characteristic boundaries and show that the perturbed system exhibits a metastable behavior in the sense that there exits a unique ε-dependent time scale on which the random system converges to a continuous time Markov chain switching between the invariant measures. As examples we consider α-stable perturbations of the Duffing equation and a chemical system exhibiting a birhythmic behavior.

The paper is devoted to asymptotic analysis of the Dirichlet problem for a second order partial differential equation containing a small parameter multiplying the highest order derivatives. It corresponds to a small perturbation of a dynamical system having a stationary solution in the domain. We focus on the case where the trajectories of the system go into the domain and the stationary solution is a proper node.