60G99 None of the above, but in this section
Refine
Has Fulltext
- yes (6)
Document Type
- Preprint (4)
- Bachelor Thesis (1)
- Doctoral Thesis (1)
Keywords
Institute
Die Bienaymé-Galton-Watson Prozesse können für die Untersuchung von speziellen und sich entwickelnden Populationen verwendet werden. Die Populationen umfassen Individuen, welche sich identisch, zufällig, selbstständig und unabhängig voneinander fortpflanzen und die jeweils nur eine Generation existieren. Die n-te Generation ergibt sich als zufällige Summe der Individuen der (n-1)-ten Generation. Die Relevanz dieser Prozesse begründet sich innerhalb der Historie und der inner- und außermathematischen Bedeutung. Die Geschichte der Bienaymé-Galton-Watson-Prozesse wird anhand der Entwicklung des Konzeptes bis heute dargestellt. Dabei werden die Wissenschaftler:innen verschiedener Disziplinen angeführt, die Erkenntnisse zu dem Themengebiet beigetragen und das Konzept in ihren Fachbereichen angeführt haben. Somit ergibt sich die außermathematische Signifikanz. Des Weiteren erhält man die innermathematische Bedeutsamkeit mittels des Konzeptes der Verzweigungsprozesse, welches auf die Bienaymé-Galton-Watson Prozesse zurückzuführen ist. Die Verzweigungsprozesse stellen eines der aussagekräftigsten Modelle für die Beschreibung des Populationswachstums dar. Darüber hinaus besteht die derzeitige Wichtigkeit durch die Anwendungsmöglichkeit der Verzweigungsprozesse und der Bienaymé-Galton-Watson Prozesse innerhalb der Epidemiologie. Es werden die Ebola- und die Corona-Pandemie als Anwendungsfelder angeführt. Die Prozesse dienen als Entscheidungsstütze für die Politik und ermöglichen Aussagen über die Auswirkungen von Maßnahmen bezüglich der Pandemien. Neben den Prozessen werden ebenfalls der bedingte Erwartungswert bezüglich diskreter Zufallsvariablen, die wahrscheinlichkeitserzeugende Funktion und die zufällige Summe eingeführt. Die Konzepte vereinfachen die Beschreibung der Prozesse und bilden somit die Grundlage der Betrachtungen. Außerdem werden die benötigten und weiterführenden Eigenschaften der grundlegenden Themengebiete und der Prozesse aufgeführt und bewiesen. Das Kapitel erreicht seinen Höhepunkt bei dem Beweis des Kritikalitätstheorems, wodurch eine Aussage über das Aussterben des Prozesses in verschiedenen Fällen und somit über die Aussterbewahrscheinlichkeit getätigt werden kann. Die Fälle werden anhand der zu erwartenden Anzahl an Nachkommen eines Individuums unterschieden. Es zeigt sich, dass ein Prozess bei einer zu erwartenden Anzahl kleiner gleich Eins mit Sicherheit ausstirbt und bei einer Anzahl größer als Eins, die Population nicht in jedem Fall aussterben muss. Danach werden einzelne Beispiele, wie der linear fractional case, die Population von Fibroblasten (Bindegewebszellen) von Mäusen und die Entstehungsfragestellung der Prozesse, angeführt. Diese werden mithilfe der erlangten Ergebnisse untersucht und einige ausgewählte zufällige Dynamiken werden im nachfolgenden Kapitel simuliert. Die Simulationen erfolgen durch ein in Python erstelltes Programm und werden mithilfe der Inversionsmethode realisiert. Die Simulationen stellen beispielhaft die Entwicklungen in den verschiedenen Kritikalitätsfällen der Prozesse dar. Zudem werden die Häufigkeiten der einzelnen Populationsgrößen in Form von Histogrammen angebracht. Dabei lässt sich der Unterschied zwischen den einzelnen Fällen bestätigen und es wird die Anwendungsmöglichkeit der Bienaymé-Galton-Watson Prozesse bei komplexeren Problemen deutlich. Histogramme bekräftigen, dass die einzelnen Populationsgrößen nur endlich oft vorkommen. Diese Aussage wurde von Galton aufgeworfen und in der Extinktions-Explosions-Dichotomie verwendet. Die dargestellten Erkenntnisse über das Themengebiet und die Betrachtung des Konzeptes werden mit einer didaktischen Analyse abgeschlossen. Die Untersuchung beinhaltet die Berücksichtigung der Fundamentalen Ideen, der Fundamentalen Ideen der Stochastik und der Leitidee „Daten und Zufall“. Dabei ergibt sich, dass in Abhängigkeit der gewählten Perspektive die Anwendung der Bienaymé-Galton-Watson Prozesse innerhalb der Schule plausibel ist und von Vorteil für die Schüler:innen sein kann. Für die Behandlung wird exemplarisch der Rahmenlehrplan für Berlin und Brandenburg analysiert und mit dem Kernlehrplan Nordrhein-Westfalens verglichen. Die Konzeption des Lehrplans aus Berlin und Brandenburg lässt nicht den Schluss zu, dass die Bienaymé-Galton-Watson Prozesse angewendet werden sollten. Es lässt sich feststellen, dass die zugrunde liegende Leitidee nicht vollumfänglich mit manchen Fundamentalen Ideen der Stochastik vereinbar ist. Somit würde eine Modifikation hinsichtlich einer stärkeren Orientierung des Lehrplans an den Fundamentalen Ideen die Anwendung der Prozesse ermöglichen. Die Aussage wird durch die Betrachtung und Übertragung eines nordrhein-westfälischen Unterrichtsentwurfes für stochastische Prozesse auf die Bienaymé-Galton-Watson Prozesse unterstützt. Darüber hinaus werden eine Concept Map und ein Vernetzungspentagraph nach von der Bank konzipiert um diesen Aspekt hervorzuheben.
Optimization is a core part of technological advancement and is usually heavily aided by computers. However, since many optimization problems are hard, it is unrealistic to expect an optimal solution within reasonable time. Hence, heuristics are employed, that is, computer programs that try to produce solutions of high quality quickly. One special class are estimation-of-distribution algorithms (EDAs), which are characterized by maintaining a probabilistic model over the problem domain, which they evolve over time. In an iterative fashion, an EDA uses its model in order to generate a set of solutions, which it then uses to refine the model such that the probability of producing good solutions is increased.
In this thesis, we theoretically analyze the class of univariate EDAs over the Boolean domain, that is, over the space of all length-n bit strings. In this setting, the probabilistic model of a univariate EDA consists of an n-dimensional probability vector where each component denotes the probability to sample a 1 for that position in order to generate a bit string.
My contribution follows two main directions: first, we analyze general inherent properties of univariate EDAs. Second, we determine the expected run times of specific EDAs on benchmark functions from theory. In the first part, we characterize when EDAs are unbiased with respect to the problem encoding. We then consider a setting where all solutions look equally good to an EDA, and we show that the probabilistic model of an EDA quickly evolves into an incorrect model if it is always updated such that it does not change in expectation.
In the second part, we first show that the algorithms cGA and MMAS-fp are able to efficiently optimize a noisy version of the classical benchmark function OneMax. We perturb the function by adding Gaussian noise with a variance of σ², and we prove that the algorithms are able to generate the true optimum in a time polynomial in σ² and the problem size n. For the MMAS-fp, we generalize this result to linear functions. Further, we prove a run time of Ω(n log(n)) for the algorithm UMDA on (unnoisy) OneMax. Last, we introduce a new algorithm that is able to optimize the benchmark functions OneMax and LeadingOnes both in O(n log(n)), which is a novelty for heuristics in the domain we consider.
In this article we analyse the structure of Markov processes and reciprocal processes to underline their time symmetrical properties, and to compare them. Our originality consists in adopting a unifying approach of reciprocal processes, independently of special frameworks in which the theory was developped till now (diffusions, or pure jump processes). This leads to some new results, too.
Reciprocal processes, whose concept can be traced back to E. Schrödinger, form a class of stochastic processes constructed as mixture of bridges, that satisfy a time Markov field property. We discuss here a new unifying approach to characterize several types of reciprocal processes via duality formulae on path spaces: The case of reciprocal processes with continuous paths associated to Brownian diffusions and the case of pure jump reciprocal processes associated to counting processes are treated. This presentation is based on joint works with M. Thieullen, R. Murr and C. Léonard.
In the limit we analyze the generators of families of reversible jump processes in the n-dimensional space associated with a class of symmetric non-local Dirichlet forms and show exponential decay of the eigenfunctions. The exponential rate function is a Finsler distance, given as solution of certain eikonal equation. Fine results are sensitive to the rate functions being twice differentiable or just Lipschitz. Our estimates are similar to the semiclassical Agmon estimates for differential operators of second order. They generalize and strengthen previous results on the lattice.
We analyze a general class of difference operators containing a multi-well potential and a small parameter. We decouple the wells by introducing certain Dirichlet operators on regions containing only one potential well, and we treat the eigenvalue problem as a small perturbation of these comparison problems. We describe tunneling by a certain interaction matrix similar to the analysis for the Schrödinger operator, and estimate the remainder, which is exponentially small and roughly quadratic compared with the interaction matrix.