## 004 Datenverarbeitung; Informatik

### Refine

#### Year of publication

- 2011 (29) (remove)

#### Document Type

- Monograph/Edited Volume (13)
- Doctoral Thesis (11)
- Postprint (4)
- Habilitation (1)

#### Keywords

- answer set programming (4)
- Antwortmengenprogrammierung (2)
- Privacy (2)
- Prozessmodellierung (2)
- Abstraktion (1)
- Abstraktion von Geschäftsprozessmodellen (1)
- Accepting Grammars (1)
- Akzeptierende Grammatiken (1)
- Algorithmen (1)
- Algorithms (1)

In Kooperation mit Partnern aus der Industrie etabliert das Hasso-Plattner-Institut (HPI) ein “HPI Future SOC Lab”, das eine komplette Infrastruktur von hochkomplexen on-demand Systemen auf neuester, am Markt noch nicht verfügbarer, massiv paralleler (multi-/many-core) Hardware mit enormen Hauptspeicherkapazitäten und dafür konzipierte Software bereitstellt. Das HPI Future SOC Lab verfügt über prototypische 4- und 8-way Intel 64-Bit Serversysteme von Fujitsu und Hewlett-Packard mit 32- bzw. 64-Cores und 1 - 2 TB Hauptspeicher. Es kommen weiterhin hochperformante Speichersysteme von EMC² sowie Virtualisierungslösungen von VMware zum Einsatz. SAP stellt ihre neueste Business by Design (ByD) Software zur Verfügung und auch komplexe reale Unternehmensdaten stehen zur Verfügung, auf die für Forschungszwecke zugegriffen werden kann. Interessierte Wissenschaftler aus universitären und außeruniversitären Forschungsinstitutionen können im HPI Future SOC Lab zukünftige hoch-komplexe IT-Systeme untersuchen, neue Ideen / Datenstrukturen / Algorithmen entwickeln und bis hin zur praktischen Erprobung verfolgen. Dieser Technische Bericht stellt erste Ergebnisse der im Rahmen der Eröffnung des Future SOC Labs im Juni 2010 gestarteten Forschungsprojekte vor. Ausgewählte Projekte stellten ihre Ergebnisse am 27. Oktober 2010 im Rahmen der Future SOC Lab Tag Veranstaltung vor.

The World Wide Web as an application platform becomes increasingly important. However, the development of Web applications is often more complex than for the desktop. Web-based development environments like Lively Webwerkstatt can mitigate this problem by making the development process more interactive and direct. By moving the development environment into the Web, applications can be developed collaboratively in a Wiki-like manner. This report documents the results of the project seminar on Web-based Development Environments 2010. In this seminar, participants extended the Web-based development environment Lively Webwerkstatt. They worked in small teams on current research topics from the field of Web-development and tool support for programmers and implemented their results in the Webwerkstatt environment.

Unique column combinations of a relational database table are sets of columns that contain only unique values. Discovering such combinations is a fundamental research problem and has many different data management and knowledge discovery applications. Existing discovery algorithms are either brute force or have a high memory load and can thus be applied only to small datasets or samples. In this paper, the wellknown GORDIAN algorithm and "Apriori-based" algorithms are compared and analyzed for further optimization. We greatly improve the Apriori algorithms through efficient candidate generation and statistics-based pruning methods. A hybrid solution HCAGORDIAN combines the advantages of GORDIAN and our new algorithm HCA, and it significantly outperforms all previous work in many situations.

Parsability approaches of several grammar formalisms generating also non-context-free languages are explored. Chomsky grammars, Lindenmayer systems, grammars with controlled derivations, and grammar systems are treated. Formal properties of these mechanisms are investigated, when they are used as language acceptors. Furthermore, cooperating distributed grammar systems are restricted so that efficient deterministic parsing without backtracking becomes possible. For this class of grammar systems, the parsing algorithm is presented and the feature of leftmost derivations is investigated in detail.

Building biological models by inferring functional dependencies from experimental data is an important issue in Molecular Biology. To relieve the biologist from this traditionally manual process, various approaches have been proposed to increase the degree of automation. However, available approaches often yield a single model only, rely on specific assumptions, and/or use dedicated, heuristic algorithms that are intolerant to changing circumstances or requirements in the view of the rapid progress made in Biotechnology. Our aim is to provide a declarative solution to the problem by appeal to Answer Set Programming (ASP) overcoming these difficulties. We build upon an existing approach to Automatic Network Reconstruction proposed by part of the authors. This approach has firm mathematical foundations and is well suited for ASP due to its combinatorial flavor providing a characterization of all models explaining a set of experiments. The usage of ASP has several benefits over the existing heuristic algorithms. First, it is declarative and thus transparent for biological experts. Second, it is elaboration tolerant and thus allows for an easy exploration and incorporation of biological constraints. Third, it allows for exploring the entire space of possible models. Finally, our approach offers an excellent performance, matching existing, special-purpose systems.

Answer Set Programming (ASP) is an emerging paradigm for declarative programming, in which a computational problem is specified by a logic program such that particular models, called answer sets, match solutions. ASP faces a growing range of applications, demanding for high-performance tools able to solve complex problems. ASP integrates ideas from a variety of neighboring fields. In particular, automated techniques to search for answer sets are inspired by Boolean Satisfiability (SAT) solving approaches. While the latter have firm proof-theoretic foundations, ASP lacks formal frameworks for characterizing and comparing solving methods. Furthermore, sophisticated search patterns of modern SAT solvers, successfully applied in areas like, e.g., model checking and verification, are not yet established in ASP solving. We address these deficiencies by, for one, providing proof-theoretic frameworks that allow for characterizing, comparing, and analyzing approaches to answer set computation. For another, we devise modern ASP solving algorithms that integrate and extend state-of-the-art techniques for Boolean constraint solving. We thus contribute to the understanding of existing ASP solving approaches and their interconnections as well as to their enhancement by incorporating sophisticated search patterns. The central idea of our approach is to identify atomic as well as composite constituents of a propositional logic program with Boolean variables. This enables us to describe fundamental inference steps, and to selectively combine them in proof-theoretic characterizations of various ASP solving methods. In particular, we show that different concepts of case analyses applied by existing ASP solvers implicate mutual exponential separations regarding their best-case complexities. We also develop a generic proof-theoretic framework amenable to language extensions, and we point out that exponential separations can likewise be obtained due to case analyses on them. We further exploit fundamental inference steps to derive Boolean constraints characterizing answer sets. They enable the conception of ASP solving algorithms including search patterns of modern SAT solvers, while also allowing for direct technology transfers between the areas of ASP and SAT solving. Beyond the search for one answer set of a logic program, we address the enumeration of answer sets and their projections to a subvocabulary, respectively. The algorithms we develop enable repetition-free enumeration in polynomial space without being intrusive, i.e., they do not necessitate any modifications of computations before an answer set is found. Our approach to ASP solving is implemented in clasp, a state-of-the-art Boolean constraint solver that has successfully participated in recent solver competitions. Although we do here not address the implementation techniques of clasp or all of its features, we present the principles of its success in the context of ASP solving.

Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications.

Using the notion of an elementary loop, Gebser and Schaub (2005. Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05 ), 53–65) refined the theorem on loop formulas attributable to Lin and Zhao (2004) by considering loop formulas of elementary loops only. In this paper, we reformulate the definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we also show that the corresponding problem is coNP-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs attributable to Ben-Eliyahu and Dechter (1994. Annals of Mathematics and Artificial Intelligence 12, 53–87). Like an HCF program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body.