### Refine

#### Year of publication

#### Document Type

- Article (732)
- Monograph/Edited Volume (425)
- Preprint (378)
- Doctoral Thesis (126)
- Other (36)
- Postprint (24)
- Review (12)
- Conference Proceeding (7)
- Part of a Book (2)
- Master's Thesis (2)

#### Language

- English (1483)
- German (250)
- French (7)
- Italien (3)
- Multiple languages (1)

#### Keywords

- index (12)
- Fredholm property (10)
- boundary value problems (10)
- cluster expansion (9)
- elliptic operators (9)
- K-theory (7)
- manifolds with singularities (7)
- pseudodifferential operators (7)
- Cauchy problem (6)
- Toeplitz operators (6)

#### Institute

- Institut für Mathematik (1744) (remove)

Data assimilation has been an active area of research in recent years, owing to its wide utility. At the core of data assimilation are filtering, prediction, and smoothing procedures. Filtering entails incorporation of measurements' information into the model to gain more insight into a given state governed by a noisy state space model. Most natural laws are governed by time-continuous nonlinear models. For the most part, the knowledge available about a model is incomplete; and hence uncertainties are approximated by means of probabilities. Time-continuous filtering, therefore, holds promise for wider usefulness, for it offers a means of combining noisy measurements with imperfect model to provide more insight on a given state.
The solution to time-continuous nonlinear Gaussian filtering problem is provided for by the Kushner-Stratonovich equation. Unfortunately, the Kushner-Stratonovich equation lacks a closed-form solution. Moreover, the numerical approximations based on Taylor expansion above third order are fraught with computational complications. For this reason, numerical methods based on Monte Carlo methods have been resorted to. Chief among these methods are sequential Monte-Carlo methods (or particle filters), for they allow for online assimilation of data. Particle filters are not without challenges: they suffer from particle degeneracy, sample impoverishment, and computational costs arising from resampling.
The goal of this thesis is to:— i) Review the derivation of Kushner-Stratonovich equation from first principles and its extant numerical approximation methods, ii) Study the feedback particle filters as a way of avoiding resampling in particle filters, iii) Study joint state and parameter estimation in time-continuous settings, iv) Apply the notions studied to linear hyperbolic stochastic differential equations.
The interconnection between Itô integrals and stochastic partial differential equations and those of Stratonovich is introduced in anticipation of feedback particle filters. With these ideas and motivated by the variants of ensemble Kalman-Bucy filters founded on the structure of the innovation process, a feedback particle filter with randomly perturbed innovation is proposed. Moreover, feedback particle filters based on coupling of prediction and analysis measures are proposed. They register a better performance than the bootstrap particle filter at lower ensemble sizes.
We study joint state and parameter estimation, both by means of extended state spaces and by use of dual filters. Feedback particle filters seem to perform well in both cases. Finally, we apply joint state and parameter estimation in the advection and wave equation, whose velocity is spatially varying. Two methods are employed: Metropolis Hastings with filter likelihood and a dual filter comprising of Kalman-Bucy filter and ensemble Kalman-Bucy filter. The former performs better than the latter.

One method of embedding groups into skew fields was introduced by A. I. Mal'tsev and B. H. Neumann (cf. [18, 19]). If G is an ordered group and F is a skew field, the set F((G)) of formal power series over F in G with well-ordered support forms a skew field into which the group ring F[G] can be embedded. Unfortunately it is not suficient that G is left-ordered since F((G)) is only an F-vector space in this case as there is no natural way to define a multiplication on F((G)). One way to extend the original idea onto left-ordered groups is to examine the endomorphism ring of F((G)) as explored by N. I. Dubrovin (cf. [5, 6]). It is possible to embed any crossed product ring F[G; η, σ] into the endomorphism ring of F((G)) such that each non-zero element of F[G; η, σ] defines an automorphism of F((G)) (cf. [5, 10]). Thus, the rational closure of F[G; η, σ] in the endomorphism ring of F((G)), which we will call the Dubrovin-ring of F[G; η, σ], is a potential candidate for a skew field of fractions of F[G; η, σ]. The methods of N. I. Dubrovin allowed to show that specific classes of groups can be embedded into a skew field. For example, N. I. Dubrovin contrived some special criteria, which are applicable on the universal covering group of SL(2, R). These methods have also been explored by J. Gräter and R. P. Sperner (cf. [10]) as well as N.H. Halimi and T. Ito (cf. [11]). Furthermore, it is of interest to know if skew fields of fractions are unique. For example, left and right Ore domains have unique skew fields of fractions (cf. [2]). This is not the general case as for example the free group with 2 generators can be embedded into non-isomorphic skew fields of fractions (cf. [12]). It seems likely that Ore domains are the most general case for which unique skew fields of fractions exist. One approach to gain uniqueness is to restrict the search to skew fields of fractions with additional properties. I. Hughes has defined skew fields of fractions of crossed product rings F[G; η, σ] with locally indicable G which fulfill a special condition. These are called Hughes-free skew fields of fractions and I. Hughes has proven that they are unique if they exist [13, 14]. This thesis will connect the ideas of N. I. Dubrovin and I. Hughes. The first chapter contains the basic terminology and concepts used in this thesis. We present methods provided by N. I. Dubrovin such as the complexity of elements in rational closures and special properties of endomorphisms of the vector space of formal power series F((G)). To combine the ideas of N.I. Dubrovin and I. Hughes we introduce Conradian left-ordered groups of maximal rank and examine their connection to locally indicable groups. Furthermore we provide notations for crossed product rings, skew fields of fractions as well as Dubrovin-rings and prove some technical statements which are used in later parts. The second chapter focuses on Hughes-free skew fields of fractions and their connection to Dubrovin-rings. For that purpose we introduce series representations to interpret elements of Hughes-free skew fields of fractions as skew formal Laurent series. This 1 Introduction allows us to prove that for Conradian left-ordered groups G of maximal rank the statement "F[G; η, σ] has a Hughes-free skew field of fractions" implies "The Dubrovin ring of F [G; η, σ] is a skew field". We will also prove the reverse and apply the results to give a new prove of Theorem 1 in [13]. Furthermore we will show how to extend injective ring homomorphisms of some crossed product rings onto their Hughes-free skew fields of fractions. At last we will be able to answer the open question whether Hughes--free skew fields are strongly Hughes-free (cf. [17, page 53]).

In this thesis, we discuss the characterization of orthogroups by so-called disjunctions of identities. The orthogroups are a subclass of the class of completely regular semigroups, a generalization of the concept of a group. Thus there is for all elements of an orthogroup some kind of an inverse element such that both elements commute. Based on a fundamental result by A.H. Clifford, every completely regular semigroup is a semilattice of completely simple semigroups. This allows the description the gross structure of such semigroup. In particular every orthogroup is a semilattice of rectangular groups which are isomorphic to direct products of rectangular bands and groups. Semilattices of rectangular groups coming from various classes are characterized using the concept of an alternative variety, a generalization of the classical idea of a variety by Birkhoff.
After starting with some fundamental definitions and results concerning semigroups, we introduce the concept of disjunctions of identities and summarize some necessary properties. In particular we present some disjunction of identities which is sufficient for a semigroup for being completely regular. Furthermore we derive from this identity some statements concerning Rees matrix semigroups, a possible representation of completely simple semigroups. A main result of this thesis is the general description of disjunctions of identities such that a completely regular semigroup satisfying the described identity is a semilattice of left groups (right groups / groups). In this case the completely regular semigroup is an orthogroup. Furthermore we define various classes of rectangular groups such that there is an exponent taken from a set of pairwise coprime positive integers. An important result is the characterization of the class of all semilattices of particular rectangular groups (taken from the classes defined before) using a set-theoretic minimal set of disjunctions of identities. Additionally we investigate semilattices of groups (so-called Clifford semigroups). For this purpose we consider abelian groups of particular exponents and prove some well-known results from the theory of Clifford semigroups in an alternative way applying the concept of disjunctions of identities. As a practical application of the results concerning semilattices of left zero semigroups and right zero semigroups we identify a particular transformation semigroup. For more detailed information about the product of two arbitrary elements of a semilattice of semigroups we introduce the concept of strong semilattices of semigroups. It is well-known that a semilattice of groups is a strong semilattice of groups. So we can characterize a strong semilattice of groups of particular pairwise coprime exponents by disjunctions of identities. Additionally we describe the class of all strong semilattices of left zero semigroups and right zero semigroups with the help of such kind of identity, and we relate this statement to the theory of normal bands. A possible extension of the already described semilattices of rectangular groups can be achieved by an auxiliary total order (in terms of chains of semigroups). To this end we present a corresponding characterization due to disjunctions of identities which is obviously minimal. A list of open questions which have arisen during the research for this thesis, but left crude, is attached.

In the thesis there are constructed new quantizations for pseudo-differential boundary value problems (BVPs) on manifolds with edge. The shape of operators comes from Boutet de Monvel’s calculus which exists on smooth manifolds with boundary. The singular case, here with edge and boundary, is much more complicated. The present approach simplifies the operator-valued symbolic structures by using suitable Mellin quantizations on infinite stretched model cones of wedges with boundary. The Mellin symbols themselves are, modulo smoothing ones, with asymptotics, holomorphic in the complex Mellin covariable. One of the main results is the construction of parametrices of elliptic elements in the corresponding operator algebra, including elliptic edge conditions.

Audience Response Systeme (ARS) stellen eine Ergänzung der Hochschullehre dar, um die Teilnehmeraktivierung zu stärken und die Studierenden unmittelbar in das Vorlesungsgeschehen einzubinden. Es existiert eine Fülle an Lösungen, die entweder ohne dedizierte Hardware auskommen (sogenannte Software-Clicker) oder die Anschaffung meist kommerzieller Hardware- Lösungen voraussetzen. An dieser Stelle versucht Hands. UP eine integrative Brücke zu schlagen. Auf Grundlage einer Kosten- und Aufwandsschätzung ausgewählter ARS-Lösungen soll die Notwendigkeit hochschulübergreifender Kooperationen hinsichtlich einer adäquate Weiterentwicklung und des Einsatzes von ARS in der Lehre motiviert werden.