• Treffer 9 von 60
Zurück zur Trefferliste

An inexact augmented Lagrangian method for nonlinear dispersion-curve inversion using Dix-type global linear approximation

  • Dispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporatingDispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporating arbitrary regularizations to shape the desired velocity model. In this research, we use total variation regularization to retrieve the shear-wave velocity model. We use two synthetic and two real data examples to illustrate the performance of the inversion algorithm with total variation regularization. We find that the method is fast and stable, and it converges to the solution of the original nonlinear problem.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Reza Dokht Dolatabadi EsfahaniORCiDGND, Ali GholamiORCiD, Matthias OhrnbergerORCiDGND
DOI:https://doi.org/10.1190/GEO2019-0717.1
ISSN:0016-8033
ISSN:1942-2156
Titel des übergeordneten Werks (Englisch):Geophysics
Verlag:Society of Exploration Geophysicists
Verlagsort:Tulsa
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:01.09.2020
Erscheinungsjahr:2020
Datum der Freischaltung:06.09.2023
Band:85
Ausgabe:5
Seitenanzahl:9
Erste Seite:EN77
Letzte Seite:EN85
Fördernde Institution:DFG German Research Foundation (DFG) European Commission
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.