• Treffer 1 von 8
Zurück zur Trefferliste

Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept

  • The production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination ofThe production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination of properties/functions can enhance the sustainability of plastics ranging from material design to waste management. We focus on tools to measure and reduce the negative impacts of plastics on the environment throughout their life cycle, the use of renewable sources for their synthesis, the design of biodegradable and/or recyclable materials, and the use of biotechnological strategies for enzymatic recycling of plastics that fits into a circular bioeconomy. Finally, we discuss future applications for sustainable plastics with the aim to achieve the SDGs through international cooperation. <br /> Leading-edge polymer-based materials for consumer and advanced applications are necessary to achieve sustainable development at a global scale. It is essential to understand how sustainability can be incorporated in these materials via green chemistry, the integration of bio-based building blocks from biorefineries, circular bioeconomy strategies, and combined smart and functional capabilities.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Natalia Andrea Tarazona LizcanoORCiD, Rainhard Gabriel MachatschekORCiDGND, Jennifer BalcuchoORCiD, Jinneth Lorena Castro-MayorgaORCiD, Juan Francisco SaldarriagaORCiD, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1557/s43581-021-00015-7
ISSN:2329-2229
ISSN:2329-2237
Titel des übergeordneten Werks (Englisch):MRS energy & sustainability : science & technology & socio-economics & policy
Verlag:Springer Nature
Verlagsort:London
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:09.02.2022
Erscheinungsjahr:2022
Datum der Freischaltung:06.03.2024
Freies Schlagwort / Tag:biomaterial; degradable; functional; life cycle assessment; renewable; sustainability
Band:9
Ausgabe:1
Seitenanzahl:7
Erste Seite:28
Letzte Seite:34
Fördernde Institution:Projekt DEAL; Helmholtz Association of German Research Centers; German; Ministry of Research and Education (BMBF) [01DN21008]; Colombian; Ministry of Science Technology and Innovation (MinCiencias) [78978]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.