Evolution of X-ray emission from young massive star clusters

  • The evolution of X-ray emission from young massive star clusters is modelled, taking into account the emission from the stars as well as from the cluster wind. It is shown that the level and character of the soft (0.2-10 keV) X-ray emission change drastically with cluster age and are tightly linked with stellar evolution. Using the modem X-ray observations of massive stars, we show that the correlation between bolometric and X-ray luminosity known for single O stars also holds for O + O and (Wolf-Rayet) WR + O binaries. The diffuse emission originates from the cluster wind heated by the kinetic energy of stellar winds and supernova explosions. To model the evolution of the cluster wind, the mass and energy yields from a population synthesis are used as input to a hydrodynamic model. It is shown that in a very young cluster the emission from the cluster wind is low. When the cluster evolves, WR stars are formed. Their strong stellar winds power an increasing X-ray emission of the cluster wind. Subsequent supernova explosions pump theThe evolution of X-ray emission from young massive star clusters is modelled, taking into account the emission from the stars as well as from the cluster wind. It is shown that the level and character of the soft (0.2-10 keV) X-ray emission change drastically with cluster age and are tightly linked with stellar evolution. Using the modem X-ray observations of massive stars, we show that the correlation between bolometric and X-ray luminosity known for single O stars also holds for O + O and (Wolf-Rayet) WR + O binaries. The diffuse emission originates from the cluster wind heated by the kinetic energy of stellar winds and supernova explosions. To model the evolution of the cluster wind, the mass and energy yields from a population synthesis are used as input to a hydrodynamic model. It is shown that in a very young cluster the emission from the cluster wind is low. When the cluster evolves, WR stars are formed. Their strong stellar winds power an increasing X-ray emission of the cluster wind. Subsequent supernova explosions pump the level of diffuse emission even higher. Clusters at this evolutionary stage may have no X-ray-bright stellar point sources, but a relatively high level of diffuse emission. A supernova remnant may become a dominant X-ray source, but only for a short time interval of a few thousand years. We retrieve and analyse Chandra and XMM-Newton observations of six massive star clusters located in the Large Magellanic Cloud (LMC). Our model reproduces the observed diffuse and point-source emission from these LMC clusters, as well as from the Galactic clusters Arches, Quintuplet and NGC 3603show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lida OskinovaORCiDGND
ISSN:0035-8711
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Monthly Notices of the Royal Astronomical Society. - ISSN 0035-8711. - 361 (2005), 2, S. 679 - 694
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.