• search hit 6 of 82
Back to Result List

Effects of lower limb light-weight wearable resistance on running biomechanics

  • Wearable resistance allows individualized loading for sport specific movements and can lead to specific strength adaptations benefiting the athlete. The objective was to determine biomechanical changes during running with lower limb light-weight wearable resistance. Fourteen participants (age: 28 +/- 4 years; height: 180 +/- 8 cm; body mass: 77 +/- 6 kg) wore shorts and calf sleeves of a compression suit allowing attachment of light loads. Participants completed four times two mins 20-m over-ground shuttle running bouts at 3.3 m*s(-1) alternated by three mins rest. The first running bout was unloaded and the other three bouts were under randomised loaded conditions (1%, 3% and 5% additional loading of the individual body mass). 3D motion cameras and force plates recorded kinematic and kinetic data at the midpoint of each 20-m shuttle. Friedman-test for repeated measures and linear mixed effect model analysis were used to determine differences between the loading conditions (alpha = 0.05). Increased peak vertical ground reaction forceWearable resistance allows individualized loading for sport specific movements and can lead to specific strength adaptations benefiting the athlete. The objective was to determine biomechanical changes during running with lower limb light-weight wearable resistance. Fourteen participants (age: 28 +/- 4 years; height: 180 +/- 8 cm; body mass: 77 +/- 6 kg) wore shorts and calf sleeves of a compression suit allowing attachment of light loads. Participants completed four times two mins 20-m over-ground shuttle running bouts at 3.3 m*s(-1) alternated by three mins rest. The first running bout was unloaded and the other three bouts were under randomised loaded conditions (1%, 3% and 5% additional loading of the individual body mass). 3D motion cameras and force plates recorded kinematic and kinetic data at the midpoint of each 20-m shuttle. Friedman-test for repeated measures and linear mixed effect model analysis were used to determine differences between the loading conditions (alpha = 0.05). Increased peak vertical ground reaction force (2.7 N/kg to 2.74 N/kg), ground contact time (0.20 s to 0.21 s) and decreased step length (1.49 m to 1.45 m) were found with additional 5 % body mass loading compared to unloaded running (0.001 > p < 0.007). Marginally more knee flexion and hip extension and less plantarflexion was seen with higher loading. Differences in the assessed parameters were present between each loading condition but accompanied by subject variability. Further studies, also examining long term effects, should be conducted to further inform use of this training tool.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Aglaja BuschORCiD, Karl M. TrounsonORCiD, Peter BrowneORCiD, Sam Robertson
DOI:https://doi.org/10.1016/j.jbiomech.2021.110903
ISSN:0021-9290
ISSN:1873-2380
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/34922193
Title of parent work (English):Journal of biomechanics : affiliated with the American Society of Biomechanics, the European Society of Biomechanics, the International Society of Biomechanics, the Japanese Society for Clinical Biomechanics and Related Research and the Australian and New Zealand Society of Biomechanics
Publisher:Elsevier Science
Place of publishing:New York, NY [u.a.]
Publication type:Article
Language:English
Year of first publication:2022
Publication year:2022
Release date:2024/01/29
Tag:3D motion; External loading; Kinematic; Kinetic; Weighted running; capture
Volume:130
Article number:110903
Number of pages:7
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Sport- und Gesundheitswissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
7 Künste und Unterhaltung / 79 Sport, Spiele, Unterhaltung / 796 Sportarten, Sportspiele
Peer review:Referiert
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.