• Deutsch

University Logo

  • Home
  • Search
  • Browse
  • Submit
  • Sitemap
Schließen
  • DDC classification
  • 7 Künste und Unterhaltung
  • 79 Sport, Spiele, Unterhaltung

796 Sportarten, Sportspiele

Refine

Has Fulltext

  • yes (30)
  • no (6)

Author

  • Granacher, Urs (8)
  • Chaabene, Helmi (5)
  • Brand, Ralf (4)
  • Mayer, Frank (4)
  • Negra, Yassine (4)
  • Appiah-Dwomoh, Edem Korkor (3)
  • Carlsohn, Anja (3)
  • Prieske, Olaf (3)
  • Schinköth, Michaela (3)
  • Bouguezzi, Raja (2)
+ more

Year of publication

  • 2020 (6)
  • 2019 (2)
  • 2018 (5)
  • 2017 (4)
  • 2016 (3)
  • 2015 (1)
  • 2013 (2)
  • 2011 (1)
  • 2010 (3)
  • 2009 (1)
+ more

Document Type

  • Doctoral Thesis (15)
  • Postprint (15)
  • Article (5)
  • Monograph/edited volume (1)

Language

  • English (22)
  • German (14)

Is part of the Bibliography

  • yes (36)

Keywords

  • Dual-process (3)
  • Motivation (3)
  • elite athletes (3)
  • 24 h recall (2)
  • Facial expression (2)
  • Heart rate variability (2)
  • Somatic (2)
  • Sport (2)
  • Stretch-shortening cycle (2)
  • Swimming performance (2)
+ more

Institute

  • Department Sport- und Gesundheitswissenschaften (26)
  • Humanwissenschaftliche Fakultät (4)
  • Department Psychologie (3)
  • Strukturbereich Kognitionswissenschaften (2)
  • Mathematisch-Naturwissenschaftliche Fakultät (1)

36 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Listening to preferred music improved running performance without changing the pacing pattern during a 6 minute run test with young male adults (2020)
Jebabli, Nidhal ; Granacher, Urs ; Selmi, Mohamed Amin ; Al-Haddabi, Badriya ; Behm, David G. ; Chaouachi, Anis ; Haj Sassi, Radhouane
Several studies have investigated the effects of music on both submaximal and maximal exercise performance at a constant work-rate. However, there is a lack of research that has examined the effects of music on the pacing strategy during self-paced exercise. The aim of this study was to examine the effects of preferred music on performance and pacing during a 6 min run test (6-MSPRT) in young male adults. Twenty healthy male participants volunteered for this study. They performed two randomly assigned trials (with or without music) of a 6-MSPRT three days apart. Mean running speed, the adopted pacing strategy, total distance covered (TDC), peak and mean heart rate (HRpeak, HRmean), blood lactate (3 min after the test), and rate of perceived exertion (RPE) were measured. Listening to preferred music during the 6-MSPRT resulted in significant TDC improvement (?10%; p = 0.016; effect size (ES) = 0.80). A significantly faster mean running speed was observed when listening to music compared with no music. The improvement of TDC in the present study is explained by a significant overall increase in speed (main effect for conditions) during the music trial. Music failed to modify pacing patterns as suggested by the similar reversed “J-shaped” profile during the two conditions. Blood-lactate concentrations were significantly reduced by 9% (p = 0.006, ES = 1.09) after the 6-MSPRT with music compared to those in the control condition. No statistically significant differences were found between the test conditions for HRpeak, HRmean, and RPE. Therefore, listening to preferred music can have positive effects on exercise performance during the 6-MSPRT, such as greater TDC, faster running speeds, and reduced blood lactate levels but has no effect on the pacing strategy.
Evaluating the physical and basic gymnastics skills assessment for talent identification in men’s artistic gymnastics proposed by the International Gymnastics Federation (2018)
Mkaouer, Bessem ; Hammoudi-Nassib, Sarra ; Amara, Samiha ; Chaabène, Helmi
This study aimed to determine the specific physical and basic gymnastics skills considered critical in gymnastics talent identification and selection as well as in promoting men’s artistic gymnastics performances. Fifty-one boys from a provincial gymnastics team (age 11.03 ± 0.95 years; height 1.33 ± 0.05 m; body mass 30.01 ± 5.53 kg; body mass index [BMI] 16.89 ± 3.93 kg/m²) regularly competing at national level voluntarily participated in this study. Anthropometric measures as well as the men’s artistic gymnastics physical test battery (i.e., International Gymnastics Federation [FIG] age group development programme) were used to assess the somatic and physical fitness profile of participants, respectively. The physical characteristics assessed were: muscle strength, flexibility, speed, endurance, and muscle power. Test outcomes were subjected to a principal components analysis to identify the most representative factors. The main findings revealed that power speed, isometric and explosive strength, strength endurance, and dynamic and static flexibility are the most determinant physical fitness aspects of the talent selection process in young male artistic gymnasts. These findings are of utmost importance for talent identification, selection, and development.
Cardio-Respiratory Endurance Responses Following a Simulated 3 x 3 Minutes Amateur Boxing Contest in Elite Level Boxers (2018)
El-Ashker, Said ; Chaabene, Helmi ; Negra, Yassine ; Prieske, Olaf ; Granacher, Urs
This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining.
Short-term seasonal development of anthropometry, body composition, physical fitness, and sport-specific performance in young olympic weightlifters (2019)
Chaabene, Helmi ; Prieske, Olaf ; Lesinski, Melanie ; Sandau, Ingo ; Granacher, Urs
The aim of this study is to monitor short-term seasonal development of young Olympic weightlifters’ anthropometry, body composition, physical fitness, and sport-specific performance. Fifteen male weightlifters aged 13.2 ± 1.3 years participated in this study. Tests for the assessment of anthropometry (e.g., body-height, body-mass), body-composition (e.g., lean-body-mass, relative fat-mass), muscle strength (grip-strength), jump performance (drop-jump (DJ) height, countermovement-jump (CMJ) height, DJ contact time, DJ reactive-strength-index (RSI)), dynamic balance (Y-balance-test), and sport-specific performance (i.e., snatch and clean-and-jerk) were conducted at different time-points (i.e., T1 (baseline), T2 (9 weeks), T3 (20 weeks)). Strength tests (i.e., grip strength, clean-and-jerk and snatch) and training volume were normalized to body mass. Results showed small-to-large increases in body-height, body-mass, lean-body-mass, and lower-limbs lean-mass from T1-to-T2 and T2-to-T3 (∆0.7–6.7%; 0.1 ≤ d ≤ 1.2). For fat-mass, a significant small-sized decrease was found from T1-to-T2 (∆13.1%; d = 0.4) and a significant increase from T2-to-T3 (∆9.1%; d = 0.3). A significant main effect of time was observed for DJ contact time (d = 1.3) with a trend toward a significant decrease from T1-to-T2 (∆–15.3%; d = 0.66; p = 0.06). For RSI, significant small increases from T1-to-T2 (∆9.9%, d = 0.5) were noted. Additionally, a significant main effect of time was found for snatch (d = 2.7) and clean-and-jerk (d = 3.1) with significant small-to-moderate increases for both tests from T1-to-T2 and T2-to-T3 (∆4.6–11.3%, d = 0.33 to 0.64). The other tests did not change significantly over time (0.1 ≤ d ≤ 0.8). Results showed significantly higher training volume for sport-specific training during the second period compared with the first period (d = 2.2). Five months of Olympic weightlifting contributed to significant changes in anthropometry, body-composition, and sport-specific performance. However, hardly any significant gains were observed for measures of physical fitness. Coaches are advised to design training programs that target a variety of fitness components to lay an appropriate foundation for later performance as an elite athlete.
Effects of the barbell load on the acceleration phase during the snatch in Olympic weightlifting (2020)
Sandau, Ingo ; Granacher, Urs
The load-depended loss of vertical barbell velocity at the end of the acceleration phase limits the maximum weight that can be lifted. Thus, the purpose of this study was to analyze how increased barbell loads affect the vertical barbell velocity in the sub-phases of the acceleration phase during the snatch. It was hypothesized that the load-dependent velocity loss at the end of the acceleration phase is primarily associated with a velocity loss during the 1st pull. For this purpose, 14 male elite weightlifters lifted seven load-stages from 70–100% of their personal best in the snatch. The load–velocity relationship was calculated using linear regression analysis to determine the velocity loss at 1st pull, transition, and 2nd pull. A group mean data contrast analysis revealed the highest load-dependent velocity loss for the 1st pull (t = 1.85, p = 0.044, g = 0.49 [−0.05, 1.04]) which confirmed our study hypothesis. In contrast to the group mean data, the individual athlete showed a unique response to increased loads during the acceleration sub-phases of the snatch. With the proposed method, individualized training recommendations on exercise selection and loading schemes can be derived to specifically improve the sub-phases of the snatch acceleration phase. Furthermore, the results highlight the importance of single-subject assessment when working with elite athletes in Olympic weightlifting.
Cardio-Respiratory endurance responses following a simulated 3 x 3 minutes amateur boxing contest in elite level boxers (2018)
El-Ashker, Said ; Chaabene, Helmi ; Negra, Yassine ; Prieske, Olaf ; Granacher, Urs
This study aimed at examining physiological responses (i.e., oxygen uptake [VO2] and heart rate [HR]) to a semi-contact 3 x 3-min format, amateur boxing combat simulation in elite level male boxers. Eleven boxers aged 21.4 +/- 2.1 years (body height 173.4 +/- 3.7, body mass 74.9 +/- 8.6 kg, body fat 12.1 +/- 1.9, training experience 5.7 +/- 1.3 years) volunteered to participate in this study. They performed a maximal graded aerobic test on a motor-driven treadmill to determine maximum oxygen uptake (VO2max), oxygen uptake (VO2AT) and heart rate (HRAT) at the anaerobic threshold, and maximal heart rate (HRmax). Additionally, VO2 and peak HR (HRpeak) were recorded following each boxing round. Results showed no significant differences between VO2max values derived from the treadmill running test and VO2 outcomes of the simulated boxing contest (p > 0.05, d = 0.02 to 0.39). However, HRmax and HRpeak recorded from the treadmill running test and the simulated amateur boxing contest, respectively, displayed significant differences regardless of the boxing round (p < 0.01, d = 1.60 to 3.00). In terms of VO2 outcomes during the simulated contest, no significant between-round differences were observed (p = 0.19, d = 0.17 to 0.73). Irrespective of the boxing round, the recorded VO2 was >90% of the VO2max. Likewise, HRpeak observed across the three boxing rounds were >= 90% of the HRmax. In summary, the simulated 3 x 3-min amateur boxing contest is highly demanding from a physiological standpoint. Thus, coaches are advised to systematically monitor internal training load for instance through rating of perceived exertion to optimize training-related adaptations and to prevent boxers from overreaching and/or overtraining.
The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers (2020)
Sammoud, Senda ; Negra, Yassine ; Bouguezzi, Raja ; Hachana, Younes ; Granacher, Urs ; Chaabene, Helmi
Background/objective Dry land-training (e.g., plyometric jump training) can be a useful mean to improve swimming performance. This study examined the effects of an 8-week plyometric jump training (PJT) program on jump and sport-specific performances in prepubertal female swimmers. Methods Twenty-two girls were randomly assigned to either a plyometric jump training group (PJTG; n = 12, age: 10.01 ± 0.57 years, maturity-offset = -1.50 ± 0.50, body mass = 36.39 ± 6.32 kg, body height = 146.90 ± 7.62 cm, body mass index = 16.50 ± 1.73 kg/m2) or an active control (CG; n = 10, age: 10.50 ± 0.28 years, maturity-offset = -1.34 ± 0.51, body mass = 38.41 ± 9.42 kg, body height = 143.60 ± 5.05 cm, body mass index = 18.48 ± 3.77 kg/m2). Pre- and post-training, tests were conducted for the assessment of muscle power (e.g., countermovement-jump [CMJ], standing-long-jump [SLJ]). Sport-specific-performances were tested using the timed 25 and 50-m front crawl with a diving-start, timed 25-m front crawl without push-off from the wall (25-m WP), and a timed 25-m kick without push-off from the wall (25-m KWP). Results Findings showed a significant main effect of time for the CMJ (d = 0.78), the SLJ (d = 0.91), 25-m front crawl test (d = 2.5), and the 25-m-KWP (d = 1.38) test. Significant group × time interactions were found for CMJ, SLJ, 25-m front crawl, 50-m front crawl, 25-m KWP, and 25-m WP test (d = 0.29–1.63) in favor of PJTG (d = 1.34–3.50). No significant pre-post changes were found for CG (p > 0.05). Conclusion In sum, PJT is effective in improving muscle power and sport-specific performances in prepubertal swimmers. Therefore, PJT should be included from an early start into the regular training program of swimmers.
The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers (2020)
Sammoud, Senda ; Negra, Yassine ; Bouguezzi, Raja ; Hachana, Younes ; Granacher, Urs ; Chaabene, Helmi
Background/objective Dry land-training (e.g., plyometric jump training) can be a useful mean to improve swimming performance. This study examined the effects of an 8-week plyometric jump training (PJT) program on jump and sport-specific performances in prepubertal female swimmers. Methods Twenty-two girls were randomly assigned to either a plyometric jump training group (PJTG; n = 12, age: 10.01 ± 0.57 years, maturity-offset = -1.50 ± 0.50, body mass = 36.39 ± 6.32 kg, body height = 146.90 ± 7.62 cm, body mass index = 16.50 ± 1.73 kg/m2) or an active control (CG; n = 10, age: 10.50 ± 0.28 years, maturity-offset = -1.34 ± 0.51, body mass = 38.41 ± 9.42 kg, body height = 143.60 ± 5.05 cm, body mass index = 18.48 ± 3.77 kg/m2). Pre- and post-training, tests were conducted for the assessment of muscle power (e.g., countermovement-jump [CMJ], standing-long-jump [SLJ]). Sport-specific-performances were tested using the timed 25 and 50-m front crawl with a diving-start, timed 25-m front crawl without push-off from the wall (25-m WP), and a timed 25-m kick without push-off from the wall (25-m KWP). Results Findings showed a significant main effect of time for the CMJ (d = 0.78), the SLJ (d = 0.91), 25-m front crawl test (d = 2.5), and the 25-m-KWP (d = 1.38) test. Significant group × time interactions were found for CMJ, SLJ, 25-m front crawl, 50-m front crawl, 25-m KWP, and 25-m WP test (d = 0.29–1.63) in favor of PJTG (d = 1.34–3.50). No significant pre-post changes were found for CG (p > 0.05). Conclusion In sum, PJT is effective in improving muscle power and sport-specific performances in prepubertal swimmers. Therefore, PJT should be included from an early start into the regular training program of swimmers.
Automatic associations and the affective valuation of exercise (2020)
Schinköth, Michaela ; Brand, Ralf
The decision to exercise is not only bound to rational considerations but also automatic affective processes. The affective–reflective theory of physical inactivity and exercise (ART) proposes a theoretical framework for explaining how the automatic affective process (type‑1 process) will influence exercise behavior, i.e., through the automatic activation of exercise-related associations and a subsequent affective valuation of exercise. This study aimed to empirically test this assumption of the ART with data from 69 study participants. A single-measurement study, including within-subject experimental variation, was conducted. Automatic associations with exercise were first measured with a single-target implicit association test. The somato-affective core of the participants’ automatic valuation of exercise-related pictures was then assessed via heart rate variability (HRV) analysis, and the affective valence of the valuation was tested with a facial expression (FE; smile and frown) task. Exercise behavior was assessed via self-report. Multiple regression (path) analysis revealed that automatic associations predicted HRV reactivity (β = −0.24, p = .044); the signs of the correlation between automatic associations and the smile FE score was in the expected direction but remained nonsignificant (β = −0.21, p = .078). HRV reactivity predicted self-reported exercise behavior (β = −0.28, p = .013) (the same pattern of results was achieved for the frown FE score). The HRV-related results illustrate the potential role of automatic negative affective reactions to the thought of exercise as a restraining force in exercise motivation. For better empirical distinction between the two ART type‑1 process components, automatic associations and the affective valuation should perhaps be measured separately in the future. The results support the notion that automatic and affective processes should be regarded as essential aspects of the motivation to exercise.
Automatic associations and the affective valuation of exercise (2020)
Schinköth, Michaela ; Brand, Ralf
The decision to exercise is not only bound to rational considerations but also automatic affective processes. The affective–reflective theory of physical inactivity and exercise (ART) proposes a theoretical framework for explaining how the automatic affective process (type‑1 process) will influence exercise behavior, i.e., through the automatic activation of exercise-related associations and a subsequent affective valuation of exercise. This study aimed to empirically test this assumption of the ART with data from 69 study participants. A single-measurement study, including within-subject experimental variation, was conducted. Automatic associations with exercise were first measured with a single-target implicit association test. The somato-affective core of the participants’ automatic valuation of exercise-related pictures was then assessed via heart rate variability (HRV) analysis, and the affective valence of the valuation was tested with a facial expression (FE; smile and frown) task. Exercise behavior was assessed via self-report. Multiple regression (path) analysis revealed that automatic associations predicted HRV reactivity (β = −0.24, p = .044); the signs of the correlation between automatic associations and the smile FE score was in the expected direction but remained nonsignificant (β = −0.21, p = .078). HRV reactivity predicted self-reported exercise behavior (β = −0.28, p = .013) (the same pattern of results was achieved for the frown FE score). The HRV-related results illustrate the potential role of automatic negative affective reactions to the thought of exercise as a restraining force in exercise motivation. For better empirical distinction between the two ART type‑1 process components, automatic associations and the affective valuation should perhaps be measured separately in the future. The results support the notion that automatic and affective processes should be regarded as essential aspects of the motivation to exercise.
  • 1 to 10

OPUS4 Logo  KOBV Logo  OAI Logo  DINI Zertifikat 2007  OA Netzwerk Logo

    • Publication server
    • University Bibliography
    • University Library
    • Policy
    • Contact
    • Imprint
    • Privacy Policy
    • Accessibility

    Login