The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 47
Back to Result List

Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa

  • West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986-2005) and future climates (2046-2065 and 2081-2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was veryWest Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986-2005) and future climates (2046-2065 and 2081-2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1-2, 2-4, 4-8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1-3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046-2065) to 2.4 (2081-2100) month year(-1) while under RCP8.5, the change ranges from 2.2 (2046-2065) to 3.0 month year(-1) (2081-2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Philip G. OguntundeORCiD, Gunnar LischeidORCiDGND, Babatunde Joseph AbiodunORCiDGND
DOI:https://doi.org/10.1007/s00477-017-1484-y
ISSN:1436-3240
ISSN:1436-3259
Title of parent work (English):Stochastic Environmental Research and Risk Assessment
Publisher:Springer
Place of publishing:New York
Publication type:Article
Language:English
Date of first publication:2018/11/04
Publication year:2018
Release date:2022/01/06
Tag:Climate change; Drought indices; Niger River Basin; River flow; Water management
Volume:32
Issue:4
Number of pages:18
First page:1017
Last Page:1034
Funding institution:Leibniz Centre for Agricultural Landscape Research (ZALF)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.